Suppr超能文献

AutoCellSeg:使用自适应图像分割和易于使用的后编辑技术实现稳健的自动集落形成单位(CFU)/细胞分析。

AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques.

机构信息

Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Mannheim, 68167, Germany.

Mannheim University of Applied Sciences, 68163, Mannheim, Germany.

出版信息

Sci Rep. 2018 May 8;8(1):7302. doi: 10.1038/s41598-018-24916-9.

Abstract

In biological assays, automated cell/colony segmentation and counting is imperative owing to huge image sets. Problems occurring due to drifting image acquisition conditions, background noise and high variation in colony features in experiments demand a user-friendly, adaptive and robust image processing/analysis method. We present AutoCellSeg (based on MATLAB) that implements a supervised automatic and robust image segmentation method. AutoCellSeg utilizes multi-thresholding aided by a feedback-based watershed algorithm taking segmentation plausibility criteria into account. It is usable in different operation modes and intuitively enables the user to select object features interactively for supervised image segmentation method. It allows the user to correct results with a graphical interface. This publicly available tool outperforms tools like OpenCFU and CellProfiler in terms of accuracy and provides many additional useful features for end-users.

摘要

在生物测定中,由于图像数据集庞大,自动化细胞/集落分割和计数是必不可少的。由于图像采集条件漂移、背景噪声以及实验中集落特征的高度变化等问题,需要一种用户友好、自适应和稳健的图像处理/分析方法。我们提出了 AutoCellSeg(基于 MATLAB),它实现了一种监督式自动且稳健的图像分割方法。AutoCellSeg 利用多阈值处理,并结合基于反馈的分水岭算法,考虑分割的合理性标准。它可用于不同的操作模式,并直观地允许用户为监督式图像分割方法交互式选择对象特征。它允许用户使用图形界面来纠正结果。与 OpenCFU 和 CellProfiler 等工具相比,这个可公开获取的工具在准确性方面表现出色,并为最终用户提供了许多其他有用的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fda6/5940850/317152660394/41598_2018_24916_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验