Suppr超能文献

用于锂离子电池的高熵Sn(CoMgMnNiZn)O转化-合金化负极材料:锂存储机制的改变、Mg的活化以及循环稳定性提高的根源

High-Entropy Sn(CoMgMnNiZn)O Conversion-Alloying Anode Material for Li-Ion Cells: Altered Lithium Storage Mechanism, Activation of Mg, and Origins of the Improved Cycling Stability.

作者信息

Moździerz Maciej, Świerczek Konrad, Dąbrowa Juliusz, Gajewska Marta, Hanc Anna, Feng Zhenhe, Cieślak Jakub, Kądziołka-Gaweł Mariola, Płotek Justyna, Marzec Mateusz, Kulka Andrzej

机构信息

Faculty of Energy and Fuels, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland.

AGH Centre of Energy, AGH University of Science and Technology, ul. Czarnowiejska 36, 30-054 Krakow, Poland.

出版信息

ACS Appl Mater Interfaces. 2022 Sep 21;14(37):42057-42070. doi: 10.1021/acsami.2c11038. Epub 2022 Sep 12.

Abstract

Benefits emerging from applying high-entropy ceramics in Li-ion technology are already well-documented in a growing number of papers. However, an intriguing question may be formulated: how can the multicomponent solid solution-type material ensure stable electrochemical performance? Utilizing an example of nonequimolar Sn-based Sn(CoMgMnNiZn)O high-entropy spinel oxide, we provide a comprehensive model explaining the observed very good cyclability. The material exhibits a high specific capacity above 600 mAh g under a specific current of 50 mA g and excellent capacity retention near 100% after 500 cycles under 200 mA g. The stability originates from the conversion-alloying reversible reactivity of the amorphous matrix, which forms during the first lithiation from the initial high-entropy structure, and preserves the high level of cation disorder at the atomic scale. In the altered Li-storage mechanism in relation to the simple oxides, the unwanted aggregated metallic grains are not exsolved from the anode and therefore do not form highly lithiated phases characterized by large volumetric changes. Also, the electrochemical activity of Mg from the oxide matrix can be clearly observed. Because the studied compound was prepared by a conventional solid-state route, implementation of the presented approach is facile and appears usable for any oxide anode material containing a high-entropy mixture of elements.

摘要

高熵陶瓷在锂离子技术中的应用所带来的益处已在越来越多的论文中得到充分记录。然而,可以提出一个有趣的问题:多组分固溶体型材料如何确保稳定的电化学性能?以非等摩尔的Sn基Sn(CoMgMnNiZn)O高熵尖晶石氧化物为例,我们提供了一个全面的模型来解释所观察到的非常好的循环稳定性。该材料在50 mA g的特定电流下表现出高于600 mAh g的高比容量,在200 mA g下500次循环后容量保持率接近100%。这种稳定性源于非晶态基体的转化-合金化可逆反应性,它在首次锂化过程中从初始的高熵结构形成,并在原子尺度上保持高水平的阳离子无序。与简单氧化物相比,在改变的锂存储机制中,不需要的聚集金属颗粒不会从阳极析出,因此不会形成具有大体积变化特征的高锂化相。此外,可以清楚地观察到氧化物基体中Mg的电化学活性。由于所研究的化合物是通过传统的固态路线制备的,所提出方法的实施很简便,并且似乎可用于任何含有元素高熵混合物的氧化物负极材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c1e/9501916/5b34a2219cd5/am2c11038_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验