Suppr超能文献

基于CT生成的用于急性缺血性卒中的MRI,结合影像组学和生成对抗网络

MRI Generated From CT for Acute Ischemic Stroke Combining Radiomics and Generative Adversarial Networks.

作者信息

Feng Eryan, Qin Pinle, Chai Rui, Zeng Jianchao, Wang Qi, Meng Yanfeng, Wang Peng

出版信息

IEEE J Biomed Health Inform. 2022 Dec;26(12):6047-6057. doi: 10.1109/JBHI.2022.3205961. Epub 2022 Dec 7.

Abstract

Compared to computed tomography (CT), magnetic resonance imaging (MRI) is more sensitive to acute ischemic stroke lesion. However, MRI is time-consuming, expensive, and susceptible to interference from metal implants. Generating MRI images from CT images can address the limitations of MRI. The key problem in the process is obtaining lesion information from CT. In this study, we propose a cross-modal image generation algorithm from CT to MRI for acute ischemic stroke by combining radiomics with generative adversarial networks. First, the lesion candidate region was obtained using radiomics, the radiomic features of the region were extracted, and the feature with the largest information gain was selected and visualized as a feature map. Then, the concatenation of the extracted feature map and the CT image was input in the generator. We added a residual module after the downsampling of the generator, following the general shape of U-Net, which can deepen the network without causing degradation problems. In addition, we introduced the lesion feature similarity loss function to focus the model on the similarity of the lesion. Through the subjective judgment of two experienced radiologists and using evaluation metrics, the results showed that the generated MRI images were very similar to the real MRI images. Moreover, the locations of the lesions were correct, and the shapes of lesions were similar to those of the real lesions, which can help doctors with timely diagnosis and treatment.

摘要

与计算机断层扫描(CT)相比,磁共振成像(MRI)对急性缺血性脑卒中病变更敏感。然而,MRI耗时、昂贵,且容易受到金属植入物的干扰。从CT图像生成MRI图像可以解决MRI的局限性。该过程中的关键问题是从CT中获取病变信息。在本研究中,我们通过将放射组学与生成对抗网络相结合,提出了一种用于急性缺血性脑卒中的从CT到MRI的跨模态图像生成算法。首先,使用放射组学获得病变候选区域,提取该区域的放射组学特征,并选择信息增益最大的特征并将其可视化为特征图。然后,将提取的特征图与CT图像的拼接输入到生成器中。我们在生成器的下采样之后添加了一个残差模块,遵循U-Net的一般形状,这可以加深网络而不会导致退化问题。此外,我们引入了病变特征相似性损失函数,以使模型专注于病变的相似性。通过两名经验丰富的放射科医生的主观判断并使用评估指标,结果表明生成的MRI图像与真实的MRI图像非常相似。此外,病变的位置正确,病变的形状与真实病变相似,这有助于医生及时进行诊断和治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验