Suppr超能文献

预测脑β-淀粉样蛋白阳性的淀粉样阴性个体的转化。

Predicting conversion of brain β-amyloid positivity in amyloid-negative individuals.

机构信息

Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.

Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea.

出版信息

Alzheimers Res Ther. 2022 Sep 12;14(1):129. doi: 10.1186/s13195-022-01067-8.

Abstract

BACKGROUND

Cortical deposition of β-amyloid (Aβ) plaque is one of the main hallmarks of Alzheimer's disease (AD). While Aβ positivity has been the main concern so far, predicting whether Aβ (-) individuals will convert to Aβ (+) has become crucial in clinical and research aspects. In this study, we aimed to develop a classifier that predicts the conversion from Aβ (-) to Aβ (+) using artificial intelligence.

METHODS

Data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort regarding patients who were initially Aβ (-). We developed an artificial neural network-based classifier with baseline age, gender, APOE ε4 genotype, and global and regional standardized uptake value ratios (SUVRs) from positron emission tomography. Ten times repeated 10-fold cross-validation was performed for model measurement, and the feature importance was assessed. To validate the prediction model, we recruited subjects at the Samsung Medical Center (SMC).

RESULTS

A total of 229 participants (53 converters) from the ADNI dataset and a total of 40 subjects (10 converters) from the SMC dataset were included. The average area under the receiver operating characteristic values of three developed models are as follows: Model 1 (age, gender, APOE ε4) of 0.674, Model 2 (age, gender, APOE ε4, global SUVR) of 0.814, and Model 3 (age, gender, APOE ε4, global and regional SUVR) of 0.841. External validation result showed an AUROC of 0.900.

CONCLUSION

We developed prediction models regarding Aβ positivity conversion. With the growing recognition of the need for earlier intervention in AD, the results of this study are expected to contribute to the screening of early treatment candidates.

摘要

背景

β-淀粉样蛋白(Aβ)斑块在大脑皮质的沉积是阿尔茨海默病(AD)的主要标志之一。虽然 Aβ 阳性一直是主要关注点,但预测 Aβ(-)个体是否会转为 Aβ(+)在临床和研究方面变得至关重要。在这项研究中,我们旨在使用人工智能开发一种预测 Aβ(-)转为 Aβ(+)的分类器。

方法

我们从阿尔茨海默病神经影像学倡议(ADNI)队列中获取了最初为 Aβ(-)的患者的数据。我们开发了一种基于人工神经网络的分类器,该分类器使用基线年龄、性别、APOE ε4 基因型以及正电子发射断层扫描的全局和区域标准化摄取值比(SUVR)。我们对模型进行了 10 次重复的 10 倍交叉验证,以评估模型的测量值,并评估特征的重要性。为了验证预测模型,我们招募了三星医疗中心(SMC)的受试者。

结果

我们纳入了 ADNI 数据集的 229 名参与者(53 名转化者)和 SMC 数据集的总共 40 名参与者(10 名转化者)。三个开发模型的平均接收者操作特征曲线下面积如下:模型 1(年龄、性别、APOE ε4)为 0.674,模型 2(年龄、性别、APOE ε4、全局 SUVR)为 0.814,模型 3(年龄、性别、APOE ε4、全局和区域 SUVR)为 0.841。外部验证结果显示 AUROC 为 0.900。

结论

我们开发了针对 Aβ 阳性转化的预测模型。随着人们越来越认识到需要更早地干预 AD,本研究的结果有望有助于筛选早期治疗候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff2/9465850/7581dcaeb49d/13195_2022_1067_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验