Suppr超能文献

根据 ATN 分类识别临床前期痴呆以进行分层试验招募:一种机器学习方法。

Identification of preclinical dementia according to ATN classification for stratified trial recruitment: A machine learning approach.

机构信息

Department of Psychiatry, University of Oxford, Oxford, United Kingdom.

Big Data for Smart Society (GATE) Institute, Sofia University, Sofia, Bulgaria.

出版信息

PLoS One. 2023 Oct 19;18(10):e0288039. doi: 10.1371/journal.pone.0288039. eCollection 2023.

Abstract

INTRODUCTION

The Amyloid/Tau/Neurodegeneration (ATN) framework was proposed to identify the preclinical biological state of Alzheimer's disease (AD). We investigated whether ATN phenotype can be predicted using routinely collected research cohort data.

METHODS

927 EPAD LCS cohort participants free of dementia or Mild Cognitive Impairment were separated into 5 ATN categories. We used machine learning (ML) methods to identify a set of significant features separating each neurodegeneration-related group from controls (A-T-(N)-). Random Forest and linear-kernel SVM with stratified 5-fold cross validations were used to optimize model whose performance was then tested in the ADNI database.

RESULTS

Our optimal results outperformed ATN cross-validated logistic regression models by between 2.2% and 8.3%. The optimal feature sets were not consistent across the 4 models with the AD pathologic change vs controls set differing the most from the rest. Because of that we have identified a subset of 10 features that yield results very close or identical to the optimal.

DISCUSSION

Our study demonstrates the gains offered by ML in generating ATN risk prediction over logistic regression models among pre-dementia individuals.

摘要

简介

淀粉样蛋白/tau/神经退行性变(ATN)框架被提出用于识别阿尔茨海默病(AD)的临床前生物学状态。我们研究了是否可以使用常规收集的研究队列数据来预测 ATN 表型。

方法

927 名 EPAD LCS 队列参与者无痴呆或轻度认知障碍,分为 5 个 ATN 类别。我们使用机器学习(ML)方法来识别一组显著特征,将每个与神经退行性变相关的组与对照组(A-T-(N)-)分开。随机森林和带有分层 5 折交叉验证的线性核 SVM 用于优化模型,然后在 ADNI 数据库中测试其性能。

结果

我们的最佳结果优于 ATN 交叉验证逻辑回归模型,差异在 2.2%到 8.3%之间。最佳特征集在 4 个模型中并不一致,AD 病理变化与对照组的差异最大。正因为如此,我们确定了一个由 10 个特征组成的子集,这些特征产生的结果与最优结果非常接近或相同。

讨论

我们的研究表明,在痴呆前个体中,ML 在生成 ATN 风险预测方面优于逻辑回归模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a718/10586674/4b2a46ae828d/pone.0288039.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验