School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China.
Appl Microbiol Biotechnol. 2022 Oct;106(19-20):6625-6640. doi: 10.1007/s00253-022-12172-x. Epub 2022 Sep 13.
Biogenic volatile organic compounds hold remarkable potential for controlling fungal decay in agro- and food products. Recently, we reported that linalool, the major volatile component of the Zanthoxylum schinifolium pericarp, showed great potential as a biofumigant to control Aspergillus flavus growth in postharvest grains. In this study, the inhibitory effects of linalool on A. flavus growth in stored grains and its underlying mechanism were investigated through transcriptomic and biochemical analyses. Linalool vapor at 800 μL/L can effectively prevent A. flavus growth in 22% moisture wheat grains. Linalool at 2 μL/mL completely inhibited the germination of A. flavus spores, and 10 μL/mL caused spore death. Scanning electron microscopy revealed that linalool treatment caused wrinkling and spore breakage. Transcriptomics showed that 3806 genes were significantly differentially expressed in A. flavus spores exposed to 2 μL/mL linalool, predominantly showing enrichment regarding the ribosome, DNA replication, glutathione metabolism, peroxisome, and MAPK signaling pathways. Flow cytometry showed that linalool treatment caused hyperpolarization of mitochondrial membrane potential. 4,6-Diamidino-2-phenylindole staining indicated that linalool caused DNA fragmentation in A. flavus spores, and monodansylcadaverine staining confirmed that linalool induced autophagy in A. flavus spores. We thus propose that linalool can damage the plasma membrane, cause mitochondrial dysfunction and DNA damage, and induce autophagy in A. flavus spores. These findings considerably improve our understanding of the mechanisms underlying the inhibitory effects of linalool on A. flavus, which is crucial regarding the development of applications to prevent postharvest grain spoilage due to A. flavus infestations. KEY POINTS: • The inhibitory potency of linalool on A. flavus spore germination was determined. • Transcriptomic analyses were performed to identify differentially expressed genes of A. flavus exposed to linalool. • A functional mechanism underlying the inhibitory effects of linalool on A. flavus spore germination is proposed.
生物源挥发性有机化合物在控制农艺和食品产品中的真菌腐烂方面具有巨大潜力。最近,我们报道称,柠檬烯是花椒果皮的主要挥发性成分,具有作为生物熏蒸剂控制收获后谷物中黄曲霉生长的巨大潜力。在这项研究中,通过转录组和生化分析研究了柠檬烯对储存谷物中黄曲霉生长的抑制作用及其潜在机制。800μL/L 的柠檬烯蒸气可有效防止 22%水分小麦中黄曲霉的生长。2μL/mL 的柠檬烯完全抑制了黄曲霉孢子的萌发,而 10μL/mL 的柠檬烯则导致孢子死亡。扫描电子显微镜显示,柠檬烯处理导致孢子皱缩和破裂。转录组学显示,暴露于 2μL/mL 柠檬烯的黄曲霉孢子中有 3806 个基因显著差异表达,主要富集核糖体、DNA 复制、谷胱甘肽代谢、过氧化物酶体和 MAPK 信号通路。流式细胞术显示,柠檬烯处理导致线粒体膜电位超极化。4,6-二脒基-2-苯基吲哚染色表明,柠檬烯导致黄曲霉孢子中的 DNA 片段化,单丹磺酰尸胺染色证实柠檬烯诱导黄曲霉孢子中的自噬。因此,我们提出柠檬烯可以破坏质膜,导致线粒体功能障碍和 DNA 损伤,并诱导黄曲霉孢子中的自噬。这些发现极大地提高了我们对柠檬烯抑制黄曲霉生长机制的理解,这对于开发应用于防止黄曲霉侵染引起的收获后谷物腐烂至关重要。 关键点: • 确定了柠檬烯对黄曲霉孢子萌发的抑制效力。 • 进行了转录组分析,以鉴定暴露于柠檬烯的黄曲霉中差异表达的基因。 • 提出了柠檬烯抑制黄曲霉孢子萌发的作用机制。