Suppr超能文献

通过干涉成像监测冷冻电镜网格的冰层厚度。

Ice thickness monitoring for cryo-EM grids by interferometry imaging.

机构信息

Gene Center and Department of Biochemistry, (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, München, Germany.

MathWorks, Ismaning, Germany.

出版信息

Sci Rep. 2022 Sep 12;12(1):15330. doi: 10.1038/s41598-022-16978-7.

Abstract

While recent technological developments contributed to breakthrough advances in single particle cryo-electron microscopy (cryo-EM), sample preparation remains a significant bottleneck for the structure determination of macromolecular complexes. A critical time factor is sample optimization that requires the use of an electron microscope to screen grids prepared under different conditions to achieve the ideal vitreous ice thickness containing the particles. Evaluating sample quality requires access to cryo-electron microscopes and a strong expertise in EM. To facilitate and accelerate the selection procedure of probes suitable for high-resolution cryo-EM, we devised a method to assess the vitreous ice layer thickness of sample coated grids. The experimental setup comprises an optical interferometric microscope equipped with a cryogenic stage and image analysis software based on artificial neural networks (ANN) for an unbiased sample selection. We present and validate this approach for different protein complexes and grid types, and demonstrate its performance for the assessment of ice quality. This technique is moderate in cost and can be easily performed on a laboratory bench. We expect that its throughput and its versatility will contribute to facilitate the sample optimization process for structural biologists.

摘要

虽然最近的技术发展为单颗粒冷冻电子显微镜(cryo-EM)的突破性进展做出了贡献,但样品制备仍然是确定大分子复合物结构的一个重大瓶颈。一个关键的时间因素是样品优化,这需要使用电子显微镜来筛选在不同条件下制备的网格,以获得包含颗粒的理想的无定形冰厚度。评估样品质量需要使用 cryo-EM 显微镜和强大的 EM 专业知识。为了促进和加速适合高分辨率 cryo-EM 的探针的选择过程,我们设计了一种方法来评估涂覆有样品的网格的无定形冰层厚度。该实验装置包括配备有低温台的光学干涉显微镜和基于人工神经网络(ANN)的图像分析软件,用于进行无偏样品选择。我们展示并验证了这种方法在不同蛋白质复合物和网格类型上的适用性,并证明了它在评估冰质量方面的性能。该技术成本适中,可在实验室台上轻松进行。我们预计,其通量和多功能性将有助于简化结构生物学家的样品优化过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d915/9468024/dc2b26c0b6b7/41598_2022_16978_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验