Pozarycki Tyler A, Hwang Dohgyu, Barron Edward J, Wilcox Brittan T, Tutika Ravi, Bartlett Michael D
Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA.
Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
Small. 2022 Oct;18(41):e2203700. doi: 10.1002/smll.202203700. Epub 2022 Sep 13.
Liquid metal (LM) composites, which consist of LM droplets dispersed in highly deformable elastomers, have recently gained interest as a multifunctional material for soft robotics and electronics. The incorporation of LM into elastic solids allows for unique combinations of material properties such as high stretchability with thermal and electrical conductivity comparable to metals. However, it is currently a challenge to incorporate LM composites into integrated systems consisting of diverse materials and components due to a lack of adhesion control. Here, a chemical anchoring methodology to increase adhesion of LM composites to diverse substrates is presented. The fracture energy increases up to 100× relative to untreated surfaces, with values reaching up to 7800 J m . Furthermore, the fracture energy, tensile modulus, and thermal conductivity can be tuned together by controlling the microstructure of LM composites. Finally, the bonding technique is used to integrate LM composites with functional electronic components without encapsulation or clamping, allowing for extreme deformations while maintaining exceptional thermal and electrical conductivity. These findings can accelerate the adoption of LM composites into complex soft robotic and electronic systems where strong, reliable bonding between diverse materials and components is required.
液态金属(LM)复合材料由分散在高度可变形弹性体中的LM液滴组成,最近作为一种用于软机器人和电子学的多功能材料受到关注。将LM掺入弹性固体中可实现材料特性的独特组合,如具有与金属相当的热导率和电导率的高拉伸性。然而,由于缺乏附着力控制,目前将LM复合材料纳入由多种材料和组件组成的集成系统是一项挑战。在此,提出了一种化学锚固方法来提高LM复合材料与各种基材的附着力。相对于未处理的表面,断裂能增加高达100倍,值可达7800 J/m²。此外,通过控制LM复合材料的微观结构,可以一起调节断裂能、拉伸模量和热导率。最后,该粘结技术用于将LM复合材料与功能性电子元件集成,无需封装或夹紧,在保持优异的热导率和电导率的同时允许极端变形。这些发现可以加速LM复合材料在复杂的软机器人和电子系统中的应用,在这些系统中需要不同材料和组件之间有牢固、可靠的粘结。