Suppr超能文献

基于胸部 CT 的全自动冠状动脉钙化(CAC)定量分析:与非增强心脏 CT 的 CAC 评分的直接比较。

Automated total and vessel-specific coronary artery calcium (CAC) quantification on chest CT: direct comparison with CAC scoring on non-contrast cardiac CT.

机构信息

Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, 430022, Hubei Province, China.

Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China.

出版信息

BMC Med Imaging. 2022 Oct 14;22(1):177. doi: 10.1186/s12880-022-00907-1.

Abstract

BACKGROUND

This study aimed to evaluate the artificial intelligence (AI)-based coronary artery calcium (CAC) quantification and regional distribution of CAC on non-gated chest CT, using standard electrocardiograph (ECG)-gated CAC scoring as the reference.

METHODS

In this retrospective study, a total of 405 patients underwent non-gated chest CT and standard ECG-gated cardiac CT. An AI-based algorithm was used for automated CAC scoring on chest CT, and Agatston score on cardiac CT was manually quantified. Bland-Altman plots were used to evaluate the agreement of absolute Agatston score between the two scans at the patient and vessel levels. Linearly weighted kappa (κ) was calculated to assess the reliability of AI-based CAC risk categorization and the number of involved vessels on chest CT.

RESULTS

The AI-based algorithm showed moderate reliability for the number of involved vessels in comparison to measures on cardiac CT (κ = 0.75, 95% CI 0.70-0.79, P < 0.001) and an assignment agreement of 76%. Considerable coronary arteries with CAC were not identified with a per-vessel false-negative rate of 59.3%, 17.8%, 34.9%, and 34.7% for LM, LAD, CX, and RCA on chest CT. The leading causes for false negatives of LM were motion artifact (56.3%, 18/32) and segmentation error (43.8%, 14/32). The motion artifact was almost the only cause for false negatives of LAD (96.6%, 28/29), CX (96.7%, 29/30), and RCA (100%, 34/34). Absolute Agatston scores on chest CT were underestimated either for the patient and individual vessels except for LAD (median difference: - 12.5, - 11.3, - 5.6, - 18.6 for total, LM, CX, and RCA, all P < 0.01; - 2.5 for LAD, P = 0.18). AI-based total Agatston score yielded good reliability for risk categorization (weighted κ 0.86, P < 0.001) and an assignment agreement of 86.7% on chest CT, with a per-patient false-negative rate of 15.2% (28/184) and false-positive rate of 0.5% (1/221) respectively.

CONCLUSIONS

AI-based per-patient CAC quantification on non-gated chest CT achieved a good agreement with dedicated ECG-gated CAC scoring overall and highly reliable CVD risk categorization, despite a slight but significant underestimation. However, it is challenging to evaluate the regional distribution of CAC without ECG-synchronization.

摘要

背景

本研究旨在评估基于人工智能(AI)的冠状动脉钙(CAC)定量以及非门控胸部 CT 上 CAC 的区域分布,以标准心电图(ECG)门控 CAC 评分作为参考。

方法

在这项回顾性研究中,共有 405 名患者接受了非门控胸部 CT 和标准 ECG 门控心脏 CT 检查。使用基于 AI 的算法对胸部 CT 进行自动 CAC 评分,对心脏 CT 的 Agatston 评分进行手动量化。Bland-Altman 图用于评估两种扫描在患者和血管水平上绝对 Agatston 评分的一致性。线性加权 κ(κ)用于评估基于 AI 的 CAC 风险分类和胸部 CT 上受累血管数量的可靠性。

结果

与心脏 CT 上的测量值相比,基于 AI 的算法显示出中等程度的受累血管数量可靠性(κ=0.75,95%CI 0.70-0.79,P<0.001),且分配一致性为 76%。LM、LAD、CX 和 RCA 每支血管的假阴性率分别为 59.3%、17.8%、34.9%和 34.7%,无法识别大量存在 CAC 的冠状动脉。导致 LM 假阴性的主要原因是运动伪影(56.3%,18/32)和分割错误(43.8%,14/32)。运动伪影几乎是导致 LAD(96.6%,28/29)、CX(96.7%,29/30)和 RCA(100%,34/34)假阴性的唯一原因。除 LAD(中位数差异:-12.5、-11.3、-5.6、-18.6 分别为总、LM、CX 和 RCA,均 P<0.01;LAD 为-2.5,P=0.18)外,胸部 CT 上的绝对 Agatston 评分均低估了患者和单个血管的 CAC。基于 AI 的总 Agatston 评分对风险分类具有良好的可靠性(加权 κ 0.86,P<0.001),并且在胸部 CT 上的分配一致性为 86.7%,每位患者的假阴性率为 15.2%(28/184),假阳性率为 0.5%(1/221)。

结论

尽管存在轻微但显著的低估,但基于 AI 的非门控胸部 CT 上的每位患者 CAC 定量与专用 ECG 门控 CAC 评分总体上具有良好的一致性,并且高度可靠的心血管疾病风险分类。然而,在没有心电图同步的情况下评估 CAC 的区域分布具有挑战性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e53d/9563469/3db92df3f53c/12880_2022_907_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验