Suppr超能文献

利用儿科患者来源的肿瘤细胞球体的共聚焦荧光显微镜进行逐患者深度迁移学习以进行药物反应分析

Patient-by-Patient Deep Transfer Learning for Drug-Response Profiling Using Confocal Fluorescence Microscopy of Pediatric Patient-Derived Tumor-Cell Spheroids.

作者信息

Berker Yannick, ElHarouni Dina, Peterziel Heike, Fiesel Petra, Witt Olaf, Oehme Ina, Schlesner Matthias, Oppermann Sina

出版信息

IEEE Trans Med Imaging. 2022 Dec;41(12):3981-3999. doi: 10.1109/TMI.2022.3205554. Epub 2022 Dec 2.

Abstract

Image-based phenotypic drug profiling is receiving increasing attention in drug discovery and precision medicine. Compared to classical end-point measurements quantifying drug response, image-based profiling enables both the quantification of drug response and characterization of disease entities and drug-induced cell-death phenotypes. Here, we aim to quantify image-based drug responses in patient-derived 3D spheroid tumor cell cultures, tackling the challenges of a lack of single-cell-segmentation methods and limited patient-derived material. Therefore, we investigate deep transfer learning with patient-by-patient fine-tuning for cell-viability quantification. We fine-tune a convolutional neural network (pre-trained on ImageNet) with 210 control images specific to a single training cell line and 54 additional screen -specific assay control images. This method of image-based drug profiling is validated on 6 cell lines with known drug sensitivities, and further tested with primary patient-derived samples in a medium-throughput setting. Network outputs at different drug concentrations are used for drug-sensitivity scoring, and dense-layer activations are used in t-distributed stochastic neighbor embeddings of drugs to visualize groups of drugs with similar cell-death phenotypes. Image-based cell-line experiments show strong correlation to metabolic results ( R ≈ 0.7 ) and confirm expected hits, indicating the predictive power of deep learning to identify drug-hit candidates for individual patients. In patient-derived samples, combining drug sensitivity scoring with phenotypic analysis may provide opportunities for complementary combination treatments. Deep transfer learning with patient-by-patient fine-tuning is a promising, segmentation-free image-analysis approach for precision medicine and drug discovery.

摘要

基于图像的表型药物分析在药物发现和精准医学中受到越来越多的关注。与量化药物反应的经典终点测量相比,基于图像的分析能够同时量化药物反应以及表征疾病实体和药物诱导的细胞死亡表型。在此,我们旨在量化患者来源的3D球体肿瘤细胞培养物中基于图像的药物反应,应对缺乏单细胞分割方法和患者来源材料有限的挑战。因此,我们研究了针对细胞活力量化进行逐患者微调的深度迁移学习。我们使用特定于单个训练细胞系的210张对照图像和另外54张特定于筛选的测定对照图像对卷积神经网络(在ImageNet上预训练)进行微调。这种基于图像的药物分析方法在6种已知药物敏感性的细胞系上得到验证,并在中通量设置下用患者来源的原代样本进一步测试。不同药物浓度下的网络输出用于药物敏感性评分,并且在药物的t分布随机邻域嵌入中使用密集层激活来可视化具有相似细胞死亡表型的药物组。基于图像的细胞系实验显示与代谢结果有很强的相关性(R≈0.7)并确认了预期的命中结果,表明深度学习在识别个体患者的药物命中候选物方面的预测能力。在患者来源的样本中,将药物敏感性评分与表型分析相结合可能为互补联合治疗提供机会。针对逐患者微调的深度迁移学习是一种用于精准医学和药物发现的有前途的、无需分割的图像分析方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验