Suppr超能文献

将深度学习与无偏自动化高内涵筛选相结合,以鉴定人类成纤维细胞中的复杂疾病特征。

Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts.

机构信息

Google Research, Mountain View, CA, USA.

The New York Stem Cell Foundation Research Institute, New York, NY, USA.

出版信息

Nat Commun. 2022 Mar 25;13(1):1590. doi: 10.1038/s41467-022-28423-4.

Abstract

Drug discovery for diseases such as Parkinson's disease are impeded by the lack of screenable cellular phenotypes. We present an unbiased phenotypic profiling platform that combines automated cell culture, high-content imaging, Cell Painting, and deep learning. We applied this platform to primary fibroblasts from 91 Parkinson's disease patients and matched healthy controls, creating the largest publicly available Cell Painting image dataset to date at 48 terabytes. We use fixed weights from a convolutional deep neural network trained on ImageNet to generate deep embeddings from each image and train machine learning models to detect morphological disease phenotypes. Our platform's robustness and sensitivity allow the detection of individual-specific variation with high fidelity across batches and plate layouts. Lastly, our models confidently separate LRRK2 and sporadic Parkinson's disease lines from healthy controls (receiver operating characteristic area under curve 0.79 (0.08 standard deviation)), supporting the capacity of this platform for complex disease modeling and drug screening applications.

摘要

由于缺乏可筛选的细胞表型,帕金森病等疾病的药物发现受到阻碍。我们提出了一种无偏的表型分析平台,它结合了自动化细胞培养、高内涵成像、细胞画和深度学习。我们将该平台应用于 91 名帕金森病患者和匹配的健康对照者的原代成纤维细胞,创建了迄今为止最大的公开可用的细胞画图像数据集,大小为 48TB。我们使用在 ImageNet 上训练的卷积深度神经网络的固定权重,从每个图像生成深度嵌入,并训练机器学习模型来检测形态疾病表型。我们的平台具有稳健性和敏感性,能够在批次和板布局之间以高精度检测到个体特异性变化。最后,我们的模型能够自信地将 LRRK2 和散发性帕金森病系与健康对照组区分开来(接受者操作特征曲线下面积为 0.79(0.08 标准差)),这支持了该平台在复杂疾病建模和药物筛选应用中的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验