Suppr超能文献

基于可解释卷积神经网络(CNN)的单通道脑电图(EEG)睡眠呼吸暂停检测。

Detection of sleep apnea from single-channel electroencephalogram (EEG) using an explainable convolutional neural network (CNN).

机构信息

Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland, New Zealand.

Department of Engineering Science, University of Auckland, Auckland, New Zealand.

出版信息

PLoS One. 2022 Sep 13;17(9):e0272167. doi: 10.1371/journal.pone.0272167. eCollection 2022.

Abstract

Sleep apnea (SA) is a common disorder involving the cessation of breathing during sleep. It can cause daytime hypersomnia, accidents, and, if allowed to progress, serious, chronic conditions. Continuous positive airway pressure is an effective SA treatment. However, long waitlists impede timely diagnosis; overnight sleep studies involve trained technicians scoring a polysomnograph, which comprises multiple physiological signals including multi-channel electroencephalography (EEG). Therefore, it is important to develop simplified and automated approaches to detect SA. In the present study, we have developed an explainable convolutional neural network (CNN) to detect SA events from single-channel EEG recordings which generalizes across subjects. The network architecture consisted of three convolutional layers. We tuned hyperparameters using the Hyperband algorithm, optimized parameters using Adam, and quantified network performance with subjectwise 10-fold cross-validation. Our CNN performed with an accuracy of 69.9%, and a Matthews correlation coefficient (MCC) of 0.38. To explain the mechanisms of our trained network, we used critical-band masking (CBM): after training, we added bandlimited noise to test recordings; we parametrically varied the noise band center frequency and noise intensity, quantifying the deleterious effect on performance. We reconciled the effects of CBM with lesioning, wherein we zeroed the trained network's 1st-layer filter kernels in turn, quantifying the deleterious effect on performance. These analyses indicated that the network learned frequency-band information consistent with known SA biomarkers, specifically, delta and beta band activity. Our results indicate single-channel EEG may have clinical potential for SA diagnosis.

摘要

睡眠呼吸暂停(SA)是一种常见的疾病,涉及睡眠期间呼吸停止。它会导致白天嗜睡、事故发生,如果不加以治疗,还会导致严重的慢性疾病。持续气道正压通气是治疗 SA 的有效方法。然而,长时间的等待名单阻碍了及时诊断;夜间睡眠研究涉及经过培训的技术人员对多导睡眠图进行评分,多导睡眠图包括多个生理信号,包括多通道脑电图(EEG)。因此,开发简化和自动化的方法来检测 SA 非常重要。在本研究中,我们开发了一种可解释的卷积神经网络(CNN),用于从单通道 EEG 记录中检测 SA 事件,该网络可以跨受试者进行推广。网络架构由三个卷积层组成。我们使用 Hyperband 算法调整超参数,使用 Adam 优化参数,并使用受试者内 10 折交叉验证量化网络性能。我们的 CNN 的准确率为 69.9%,马修斯相关系数(MCC)为 0.38。为了解释我们训练的网络的机制,我们使用临界频带掩蔽(CBM):在训练后,我们在测试记录中添加带限噪声;我们参数化地改变噪声频带中心频率和噪声强度,量化对性能的有害影响。我们将 CBM 的影响与病变进行了协调,其中我们依次将训练好的网络的第一层滤波器核置零,量化对性能的有害影响。这些分析表明,网络学习的频带信息与已知的 SA 生物标志物一致,特别是 delta 和 beta 频带活动。我们的结果表明,单通道 EEG 可能具有用于 SA 诊断的临床潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e446/9469966/e81122ecb262/pone.0272167.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验