Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA.
J Stroke Cerebrovasc Dis. 2022 Nov;31(11):106757. doi: 10.1016/j.jstrokecerebrovasdis.2022.106757. Epub 2022 Sep 10.
Automated image-level detection of large vessel occlusions (LVO) could expedite patient triage for mechanical thrombectomy. A few studies have previously attempted LVO detection using artificial intelligence (AI) on CT angiography (CTA) images. To our knowledge this is the first study to detect LVO existence and location on raw 4D-CTA/ CT perfusion (CTP) images using neural network (NN) models.
Retrospective study using data from a level-I stroke center was performed. A total of 306 (187 with LVO, and 119 without) patients were evaluated. Image pre-processing included co-registration, normalization and skull stripping. Five consecutive time-points for each patient were selected to provide variable contrast density in data. Additional data augmentation included rotation and horizonal image flipping. Our model architecture consisted of two neural networks, first for classification (based on hemispheric asymmetry), followed by second model for exact site of LVO detection. Only cases deemed positive by the classification model were routed to the detection model, thereby reducing false positives and improving specificity. The results were compared with expert annotated LVO detection.
Using a 80:20 split for training and validation, the combination of both classification and detection model achieved a sensitivity of 86.5%, a specificity of 89.5%, and an accuracy of 87.5%. A 5-fold cross-validation using the entire data achieved a mean sensitivity of 82.7%, a specificity of 89.8%, and an accuracy of 85.5% and a mean AUC of 0.89 (95% CI: 0.85-0.93).
Our findings suggest that accurate image-level LVO detection is feasible on CTP raw images.
自动化的影像层面大血管闭塞(LVO)检测可加快机械血栓切除术的患者分诊。一些先前的研究已经尝试在 CT 血管造影(CTA)影像上使用人工智能(AI)来进行 LVO 检测。据我们所知,这是首次使用神经网络(NN)模型在原始的 4D-CTA/CT 灌注(CTP)影像上检测 LVO 的存在和位置。
回顾性研究使用了来自一级卒中中心的数据。共评估了 306 例患者(187 例有 LVO,119 例无 LVO)。影像预处理包括配准、归一化和颅骨剥离。为每个患者选择了 5 个连续的时间点,以提供数据中可变的对比密度。额外的数据扩充包括旋转和水平图像翻转。我们的模型架构由两个神经网络组成,第一个用于分类(基于半球不对称性),然后是第二个用于精确检测 LVO 的位置。只有分类模型认为阳性的病例才会被路由到检测模型,从而减少假阳性并提高特异性。结果与专家标注的 LVO 检测进行了比较。
使用 80:20 的比例进行训练和验证,分类和检测模型的组合达到了 86.5%的敏感性、89.5%的特异性和 87.5%的准确性。使用整个数据进行的 5 折交叉验证平均敏感性为 82.7%,特异性为 89.8%,准确性为 85.5%,平均 AUC 为 0.89(95%CI:0.85-0.93)。
我们的研究结果表明,在 CTP 原始影像上进行准确的影像层面 LVO 检测是可行的。