Suppr超能文献

基因流偏倚重组率的群体遗传推断。

Gene flow biases population genetic inference of recombination rate.

机构信息

Department of Biology, Duke University, Durham, NC 27708, USA.

Department of Evolution, Ecology, and Organismal Biology, The University of California, Riverside,Riverside, CA 92521, USA.

出版信息

G3 (Bethesda). 2022 Nov 4;12(11). doi: 10.1093/g3journal/jkac236.

Abstract

Accurate estimates of the rate of recombination are key to understanding a host of evolutionary processes as well as the evolution of the recombination rate itself. Model-based population genetic methods that infer recombination rates from patterns of linkage disequilibrium in the genome have become a popular method to estimate rates of recombination. However, these linkage disequilibrium-based methods make a variety of simplifying assumptions about the populations of interest that are often not met in natural populations. One such assumption is the absence of gene flow from other populations. Here, we use forward-time population genetic simulations of isolation-with-migration scenarios to explore how gene flow affects the accuracy of linkage disequilibrium-based estimators of recombination rate. We find that moderate levels of gene flow can result in either the overestimation or underestimation of recombination rates by up to 20-50% depending on the timing of divergence. We also find that these biases can affect the detection of interpopulation differences in recombination rate, causing both false positives and false negatives depending on the scenario. We discuss future possibilities for mitigating these biases and recommend that investigators exercise caution and confirm that their study populations meet assumptions before deploying these methods.

摘要

准确估计重组率对于理解一系列进化过程以及重组率本身的进化至关重要。基于模型的群体遗传方法通过推断基因组中连锁不平衡的模式来推断重组率,已经成为一种估算重组率的流行方法。然而,这些基于连锁不平衡的方法对感兴趣的群体做出了各种简化假设,而这些假设在自然群体中往往不成立。其中一个假设是没有来自其他群体的基因流。在这里,我们使用带有迁移的隔离的正向时间群体遗传模拟来探索基因流如何影响基于连锁不平衡的重组率估计器的准确性。我们发现,适度的基因流可能导致重组率的高估或低估,最高可达 20-50%,具体取决于分歧的时间。我们还发现,这些偏差会影响对重组率的种间差异的检测,导致根据情况出现假阳性和假阴性。我们讨论了减轻这些偏差的未来可能性,并建议研究人员在使用这些方法之前保持谨慎并确认他们的研究群体符合假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/738c/9635666/407d2b3a8bcb/jkac236f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验