Suppr超能文献

基于模拟的方法、数据类型和时间采样方案评估,用于检测近期的种群下降。

Simulation-Based Evaluation of Methods, Data Types, and Temporal Sampling Schemes for Detecting Recent Population Declines.

机构信息

Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA.

出版信息

Integr Comp Biol. 2022 Dec 30;62(6):1849-1863. doi: 10.1093/icb/icac144.

Abstract

Understanding recent population trends is critical to quantifying species vulnerability and implementing effective management strategies. To evaluate the accuracy of genomic methods for quantifying recent declines (beginning <120 generations ago), we simulated genomic data using forward-time methods (SLiM) coupled with coalescent simulations (msprime) under a number of demographic scenarios. We evaluated both site frequency spectrum (SFS)-based methods (momi2, Stairway Plot) and methods that employ linkage disequilibrium information (NeEstimator, GONE) with a range of sampling schemes (contemporary-only samples, sampling two time points, and serial sampling) and data types (RAD-like data and whole-genome sequencing). GONE and momi2 performed best overall, with >80% power to detect severe declines with large sample sizes. Two-sample and serial sampling schemes could accurately reconstruct changes in population size, and serial sampling was particularly valuable for making accurate inferences when genotyping errors or minor allele frequency cutoffs distort the SFS or under model mis-specification. However, sampling only contemporary individuals provided reliable inferences about contemporary size and size change using either site frequency or linkage-based methods, especially when large sample sizes or whole genomes from contemporary populations were available. These findings provide a guide for researchers designing genomics studies to evaluate recent demographic declines.

摘要

了解近期的人口趋势对于量化物种脆弱性和实施有效的管理策略至关重要。为了评估基因组方法量化近期衰退(开始于<120 代前)的准确性,我们使用正向时间方法(SLiM)和合并模拟(msprime)模拟了基因组数据,模拟了多种人口统计情景。我们评估了基于位点频率谱(SFS)的方法(momi2、Stairway Plot)和利用连锁不平衡信息的方法(NeEstimator、GONE),这些方法具有多种采样方案(仅当代样本、采样两个时间点和连续采样)和数据类型(RAD 样数据和全基因组测序)。GONE 和 momi2 的整体表现最好,具有>80%的检测大样本量严重衰退的能力。两样本和连续采样方案可以准确重建种群规模的变化,并且当基因分型错误或次要等位基因频率截断会扭曲 SFS 或模型不规范时,连续采样对于进行准确推断特别有价值。然而,仅采样当代个体使用基于位点频率或基于连锁的方法可以提供关于当代规模和规模变化的可靠推断,特别是当有大样本量或当代群体的全基因组时。这些发现为研究人员设计基因组学研究提供了指导,以评估近期的人口衰退。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce4/9801984/e713c5592c9a/icac144fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验