Suppr超能文献

基于段标签的新型上下文特征随机森林心拍分类

Heartbeat Classification by Random Forest With a Novel Context Feature: A Segment Label.

机构信息

Klinikum Rechts der Isar derTechnische Universität München 81675 München Germany.

Signal Processing GroupTechnische Universität München 80333 München Germany.

出版信息

IEEE J Transl Eng Health Med. 2022 Aug 29;10:1900508. doi: 10.1109/JTEHM.2022.3202749. eCollection 2022.

Abstract

OBJECTIVE

Physicians use electrocardiograms (ECG) to diagnose cardiac abnormalities. Sometimes they need to take a deeper look at abnormal heartbeats to diagnose the patients more precisely. The objective of this research is to design a more accurate heartbeat classification algorithm to assist physicians in identifying specific types of the heartbeat.

METHODS AND PROCEDURES

In this paper, we propose a novel feature called a segment label, to improve the performance of a heartbeat classifier. This feature, provided by a Convolutional Neural Network, encodes the information surrounding the particular heartbeat. The random forest classifier is trained based on this new feature and other traditional features to classify the heartbeats.

RESULTS

We validate our method on the MIT-BIH Arrhythmia dataset following the inter-patient evaluation paradigm. The proposed method is competitive with other similar works. It achieves an accuracy of 0.96, and F1-scores for normal beats, ventricular ectopic beats, and Supra-Ventricular Ectopic Beats (SVEB) of 0.98, 0.93, and 0.74, respectively. The precision and sensitivity for SVEB are 0.76 and 0.78, which outperforms the state-of-the-art methods.

CONCLUSION

This study demonstrates that the segment label can contribute to precisely classifying heartbeats, especially those that require rhythm information as context information (e.g. SVEB). Using a medical devices embedding our algorithm could ease the physicians' processes of diagnosing cardiovascular diseases, especially for SVEB, in clinical implementation.

摘要

目的

医生使用心电图(ECG)来诊断心脏异常。有时,他们需要更深入地观察异常心跳,以更准确地诊断患者。本研究的目的是设计一种更准确的心跳分类算法,以帮助医生识别特定类型的心跳。

方法与步骤

在本文中,我们提出了一种称为段标签的新特征,以提高心跳分类器的性能。该特征由卷积神经网络提供,编码特定心跳周围的信息。随机森林分类器基于该新特征和其他传统特征进行训练,以对心跳进行分类。

结果

我们按照患者间评估的范例,在 MIT-BIH 心律失常数据集上验证了我们的方法。所提出的方法与其他类似工作具有竞争力。它实现了 0.96 的准确率,以及正常心跳、室性异位心跳和室上性异位心跳(SVEB)的 F1 分数分别为 0.98、0.93 和 0.74。SVEB 的精度和敏感度分别为 0.76 和 0.78,优于现有方法。

结论

本研究表明,段标签可以有助于精确分类心跳,特别是那些需要节律信息作为上下文信息的心跳(例如 SVEB)。在临床实施中,使用嵌入我们算法的医疗设备可以简化医生诊断心血管疾病的过程,特别是对于 SVEB。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf69/9455809/252edc98b15a/zou1-3202749.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验