Suppr超能文献

基于冷冻电子断层扫描的大分子结构分类自监督学习

Self-supervised learning for macromolecular structure classification based on cryo-electron tomograms.

作者信息

Gupta Tarun, He Xuehai, Uddin Mostofa Rafid, Zeng Xiangrui, Zhou Andrew, Zhang Jing, Freyberg Zachary, Xu Min

机构信息

Department of Computer Science and Engineering, Indian Institute of Technology, Indore, India.

Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, CA, United States.

出版信息

Front Physiol. 2022 Aug 30;13:957484. doi: 10.3389/fphys.2022.957484. eCollection 2022.

Abstract

Macromolecular structure classification from cryo-electron tomography (cryo-ET) data is important for understanding macro-molecular dynamics. It has a wide range of applications and is essential in enhancing our knowledge of the sub-cellular environment. However, a major limitation has been insufficient labelled cryo-ET data. In this work, we use Contrastive Self-supervised Learning (CSSL) to improve the previous approaches for macromolecular structure classification from cryo-ET data with limited labels. We first pretrain an encoder with unlabelled data using CSSL and then fine-tune the pretrained weights on the downstream classification task. To this end, we design a cryo-ET domain-specific data-augmentation pipeline. The benefit of augmenting cryo-ET datasets is most prominent when the original dataset is limited in size. Overall, extensive experiments performed on real and simulated cryo-ET data in the semi-supervised learning setting demonstrate the effectiveness of our approach in macromolecular labeling and classification.

摘要

从冷冻电子断层扫描(cryo-ET)数据进行大分子结构分类对于理解大分子动力学很重要。它有广泛的应用,并且对于增进我们对亚细胞环境的了解至关重要。然而,一个主要限制是标记的冷冻电子断层扫描数据不足。在这项工作中,我们使用对比自监督学习(CSSL)来改进先前从有限标签的冷冻电子断层扫描数据进行大分子结构分类的方法。我们首先使用CSSL对未标记数据预训练一个编码器,然后在下游分类任务上微调预训练权重。为此,我们设计了一个冷冻电子断层扫描领域特定的数据增强管道。当原始数据集规模有限时,增强冷冻电子断层扫描数据集的好处最为显著。总体而言,在半监督学习设置下对真实和模拟冷冻电子断层扫描数据进行的广泛实验证明了我们的方法在大分子标记和分类中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c97/9468634/0544a059f6d4/fphys-13-957484-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验