Suppr超能文献

面向冷冻电子断层扫描中大分子复合物的无监督分类:挑战与机遇。

Towards unsupervised classification of macromolecular complexes in cryo electron tomography: Challenges and opportunities.

机构信息

Inria Rennes: Inria Centre de Recherche Rennes Bretagne Atlantique, France.

Inria Rennes: Inria Centre de Recherche Rennes Bretagne Atlantique, France.

出版信息

Comput Methods Programs Biomed. 2022 Oct;225:107017. doi: 10.1016/j.cmpb.2022.107017. Epub 2022 Jul 16.

Abstract

BACKGROUND AND OBJECTIVES

Cryo electron tomography visualizes native cells at nanometer resolution, but analysis is challenged by noise and artifacts. Recently, supervised deep learning methods have been applied to decipher the 3D spatial distribution of macromolecules. However, in order to discover unknown objects, unsupervised classification techniques are necessary. In this paper, we provide an overview of unsupervised deep learning techniques, discuss the challenges to analyze cryo-ET data, and provide a proof-of-concept on real data.

METHODS

We propose a weakly supervised subtomogram classification method based on transfer learning. We use a deep neural network to learn a clustering friendly representation able to capture 3D shapes in the presence of noise and artifacts. This representation is learned here from a synthetic data set.

RESULTS

We show that when applying k-means clustering given a learning-based representation, it becomes possible to satisfyingly classify real subtomograms according to structural similarity. It is worth noting that no manual annotation is used for performing classification.

CONCLUSIONS

We describe the advantages and limitations of our proof-of-concept and raise several perspectives for improving classification performance.

摘要

背景与目的

冷冻电子断层扫描以纳米分辨率可视化天然细胞,但分析受到噪声和伪影的挑战。最近,监督深度学习方法已被应用于破译大分子的 3D 空间分布。然而,为了发现未知对象,需要使用无监督分类技术。本文综述了无监督深度学习技术,讨论了分析冷冻电子断层扫描数据的挑战,并提供了真实数据的概念验证。

方法

我们提出了一种基于迁移学习的弱监督子断层分类方法。我们使用深度神经网络学习一种聚类友好的表示形式,能够在存在噪声和伪影的情况下捕获 3D 形状。在此,我们从合成数据集学习该表示形式。

结果

我们表明,在应用基于学习的表示形式的 k-均值聚类时,可以根据结构相似性令人满意地对真实的子断层进行分类。值得注意的是,分类过程没有使用任何手动注释。

结论

我们描述了我们概念验证的优点和局限性,并提出了几种提高分类性能的观点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验