Suppr超能文献

估计总体方差、标准差和变异系数:样本量和精度。

Estimating the population variance, standard deviation, and coefficient of variation: Sample size and accuracy.

机构信息

Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.

497 Quartz Street, Los Alamos, NM, 87544, USA.

出版信息

J Hum Evol. 2022 Oct;171:103230. doi: 10.1016/j.jhevol.2022.103230. Epub 2022 Sep 14.

Abstract

Small sample sizes are often used in human and primate evolutionary research to estimate population parameters such as the mean, variance, and standard deviation, as well as statistical measures such as the coefficient of variation. Determining how well sample estimates represent population parameters is essential for establishing confidence in the inferences made using those samples. We present methods for determining a priori the probability, based on Cochran's theorem, that the sample variance and sample standard deviation are within a specified fraction of the population parameters. We validate these methods using random resampling with replacement of a single variable from a commonly used large craniometric data set comprising modern human population samples from around the world. Results based on Cochran's theorem, which we validate, indicate that large random samples comprising hundreds of observations, rather than tens of observations, are needed to be confident that the sample estimate is a reasonably accurate approximation of the true population variance. Smaller sample sizes on the order of tens of observations, however, are sufficient for estimating the population standard deviation. We extend our method of validation to show that the coefficient of variation mirrors closely the results for the standard deviation.

摘要

小样本量常用于人类和灵长类进化研究中,以估计种群参数,如均值、方差和标准差,以及统计量,如变异系数。确定样本估计值如何代表种群参数对于建立对使用这些样本进行推断的信心至关重要。我们提出了一种基于 Cochran 定理的方法,用于确定在特定分数内样本方差和样本标准差在种群参数范围内的概率。我们使用从全世界现代人类样本中随机抽取的单个变量进行替换的随机重采样来验证这些方法。基于 Cochran 定理的结果表明,需要包含数百个观测值的大随机样本,而不是数十个观测值,才能有信心样本估计值是真实种群方差的合理近似值。然而,数十个观测值的较小样本量足以估计种群标准差。我们扩展了验证方法,以表明变异系数与标准差的结果密切相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验