Suppr超能文献

基于功能化富勒吡咯烷的钙钛矿太阳能电池的化学稳定化

Chemical Stabilization of Perovskite Solar Cells with Functional Fulleropyrrolidines.

作者信息

Liu Yao, Page Zachariah A, Zhou Dongming, Duzhko Volodimyr V, Kittilstved Kevin R, Emrick Todd, Russell Thomas P

机构信息

Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States.

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

出版信息

ACS Cent Sci. 2018 Feb 28;4(2):216-222. doi: 10.1021/acscentsci.7b00454. Epub 2017 Dec 27.

Abstract

While perovskite solar cells have invigorated the photovoltaic research community due to their excellent power conversion efficiencies (PCEs), these devices notably suffer from poor stability. To address this crucial issue, a solution-processable organic chemical inhibition layer (OCIL) was integrated into perovskite solar cells, resulting in improved device stability and a maximum PCE of 16.3%. Photoenhanced self-doping of the fulleropyrrolidine mixture in the interlayers afforded devices that were advantageously insensitive to OCIL thickness, ranging from 4 to 190 nm. X-ray photoelectron spectroscopy (XPS) indicated that the fulleropyrrolidine mixture improved device stability by stabilizing the metal electrode and trapping ionic defects (i.e., I) that originate from the perovskite active layer. Moreover, degraded devices were rejuvenated by repeatedly peeling away and replacing the OCIL/Ag electrode, and this repeel and replace process resulted in further improvement to device stability with minimal variation of device efficiency.

摘要

尽管钙钛矿太阳能电池因其出色的功率转换效率(PCE)为光伏研究领域注入了活力,但这些器件明显存在稳定性差的问题。为了解决这一关键问题,一种可溶液加工的有机化学抑制层(OCIL)被集成到钙钛矿太阳能电池中,从而提高了器件的稳定性,并实现了16.3%的最大功率转换效率。中间层中富勒吡咯烷混合物的光增强自掺杂使得器件对4至190纳米范围内的OCIL厚度具有有利的不敏感性。X射线光电子能谱(XPS)表明,富勒吡咯烷混合物通过稳定金属电极并捕获源自钙钛矿活性层的离子缺陷(即碘离子)来提高器件的稳定性。此外,通过反复剥离和更换OCIL/Ag电极,降解的器件得以恢复活力,这种剥离和更换过程进一步提高了器件的稳定性,同时器件效率的变化最小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae02/5833006/744644045b06/oc-2017-00454u_0001.jpg

相似文献

1
Chemical Stabilization of Perovskite Solar Cells with Functional Fulleropyrrolidines.
ACS Cent Sci. 2018 Feb 28;4(2):216-222. doi: 10.1021/acscentsci.7b00454. Epub 2017 Dec 27.
2
Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2017 Oct 18;9(41):36070-36081. doi: 10.1021/acsami.7b10365. Epub 2017 Oct 5.
3
Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells.
J Phys Chem B. 2018 Jan 18;122(2):511-520. doi: 10.1021/acs.jpcb.7b03921. Epub 2017 May 25.
5
Organic/Inorganic Hybrid p-Type Semiconductor Doping Affords Hole Transporting Layer Free Thin-Film Perovskite Solar Cells with High Stability.
ACS Appl Mater Interfaces. 2019 Jun 26;11(25):22603-22611. doi: 10.1021/acsami.9b06513. Epub 2019 Jun 12.
6
Fulleropyrrolidine interlayers: tailoring electrodes to raise organic solar cell efficiency.
Science. 2014 Oct 24;346(6208):441-4. doi: 10.1126/science.1255826. Epub 2014 Sep 18.
7
High-Performance 1 cm Perovskite-Organic Tandem Solar Cells with a Solvent-Resistant and Thickness-Insensitive Interconnecting Layer.
ACS Appl Mater Interfaces. 2022 Jul 6;14(26):29896-29904. doi: 10.1021/acsami.2c06760. Epub 2022 Jun 26.
8
Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells.
ACS Nano. 2020 Feb 25;14(2):1445-1456. doi: 10.1021/acsnano.9b03268. Epub 2020 Jan 27.
9
Interpenetration of CHNHPbI and TiO improves perovskite solar cells while TiO expansion leads to degradation.
Phys Chem Chem Phys. 2017 Aug 16;19(32):21407-21413. doi: 10.1039/c7cp03116e.

引用本文的文献

2
Enhancing Performance and Stability of Perovskite Solar Cells through Surface Defect Passivation with Organic Bidentate Lewis Bases.
ACS Omega. 2022 Sep 2;7(36):32383-32392. doi: 10.1021/acsomega.2c03802. eCollection 2022 Sep 13.

本文引用的文献

2
The Structural Origin of Electron Injection Enhancements with Fulleropyrrolidine Interlayers.
Adv Mater Interfaces. 2016 May 23;3(10). doi: 10.1002/admi.201500852. Epub 2016 Feb 25.
3
Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells.
ACS Nano. 2016 Jun 28;10(6):6306-14. doi: 10.1021/acsnano.6b02613. Epub 2016 May 20.
4
Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells.
J Am Chem Soc. 2016 Mar 2;138(8):2528-31. doi: 10.1021/jacs.6b00039. Epub 2016 Feb 18.
5
Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells.
Acc Chem Res. 2016 Jan 19;49(1):155-65. doi: 10.1021/acs.accounts.5b00404. Epub 2015 Dec 22.
6
Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells.
ACS Nano. 2016 Jan 26;10(1):218-24. doi: 10.1021/acsnano.5b03687. Epub 2015 Dec 24.
7
Hole-Transporting Materials with a Two-Dimensionally Expanded π-System around an Azulene Core for Efficient Perovskite Solar Cells.
J Am Chem Soc. 2015 Dec 23;137(50):15656-9. doi: 10.1021/jacs.5b11008. Epub 2015 Dec 10.
8
9
Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells.
J Am Chem Soc. 2015 Dec 30;137(51):16172-8. doi: 10.1021/jacs.5b11076. Epub 2015 Dec 14.
10
Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability.
Adv Mater. 2016 Jan 27;28(4):686-93. doi: 10.1002/adma.201503729. Epub 2015 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验