Suppr超能文献

使用并行图神经网络对蛋白-配体相互作用进行解码。

Decoding the protein-ligand interactions using parallel graph neural networks.

机构信息

Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352, USA.

出版信息

Sci Rep. 2022 May 10;12(1):7624. doi: 10.1038/s41598-022-10418-2.

Abstract

Protein-ligand interactions (PLIs) are essential for biochemical functionality and their identification is crucial for estimating biophysical properties for rational therapeutic design. Currently, experimental characterization of these properties is the most accurate method, however, this is very time-consuming and labor-intensive. A number of computational methods have been developed in this context but most of the existing PLI prediction heavily depends on 2D protein sequence data. Here, we present a novel parallel graph neural network (GNN) to integrate knowledge representation and reasoning for PLI prediction to perform deep learning guided by expert knowledge and informed by 3D structural data. We develop two distinct GNN architectures: [Formula: see text] is the base implementation that employs distinct featurization to enhance domain-awareness, while [Formula: see text] is a novel implementation that can predict with no prior knowledge of the intermolecular interactions. The comprehensive evaluation demonstrated that GNN can successfully capture the binary interactions between ligand and protein's 3D structure with 0.979 test accuracy for [Formula: see text] and 0.958 for [Formula: see text] for predicting activity of a protein-ligand complex. These models are further adapted for regression tasks to predict experimental binding affinities and [Formula: see text] crucial for compound's potency and efficacy. We achieve a Pearson correlation coefficient of 0.66 and 0.65 on experimental affinity and 0.50 and 0.51 on [Formula: see text] with [Formula: see text] and [Formula: see text], respectively, outperforming similar 2D sequence based models. Our method can serve as an interpretable and explainable artificial intelligence (AI) tool for predicted activity, potency, and biophysical properties of lead candidates. To this end, we show the utility of [Formula: see text] on SARS-Cov-2 protein targets by screening a large compound library and comparing the prediction with the experimentally measured data.

摘要

蛋白质-配体相互作用 (PLI) 是生物化学功能的基础,其鉴定对于估计合理治疗设计的生物物理性质至关重要。目前,这些性质的实验表征是最准确的方法,但非常耗时且劳动密集。在这种情况下,已经开发了许多计算方法,但现有的大多数 PLI 预测严重依赖于 2D 蛋白质序列数据。在这里,我们提出了一种新颖的并行图神经网络 (GNN),用于整合知识表示和推理,以进行由专家知识指导和 3D 结构数据提供信息的深度学习,以进行 PLI 预测。我们开发了两种不同的 GNN 架构:[Formula: see text] 是基础实现,它采用不同的特征化方法来增强领域意识,而 [Formula: see text] 是一种新颖的实现,可以在没有分子间相互作用先验知识的情况下进行预测。综合评估表明,GNN 可以成功地捕捉配体和蛋白质 3D 结构之间的二元相互作用,对于 [Formula: see text],测试准确性为 0.979,对于 [Formula: see text],测试准确性为 0.958,用于预测蛋白质-配体复合物的活性。这些模型进一步适应回归任务,以预测实验结合亲和力和[Formula: see text],这对于化合物的效力和功效至关重要。我们在实验亲和力上实现了 Pearson 相关系数为 0.66 和 0.65,在[Formula: see text]上实现了 0.50 和 0.51,分别使用 [Formula: see text] 和 [Formula: see text],优于类似的基于 2D 序列的模型。我们的方法可以作为一种可解释和可解释的人工智能 (AI) 工具,用于预测先导候选物的活性、效力和生物物理性质。为此,我们通过筛选大型化合物库并将预测与实验测量数据进行比较,展示了 [Formula: see text] 在 SARS-Cov-2 蛋白靶标上的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f987/9090825/1419973b7edb/41598_2022_10418_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验