Department of Cardiology, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do 28644, Republic of Korea.
Medical AI Research Team, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do 28644, Republic of Korea.
J Healthc Eng. 2022 Sep 10;2022:2863495. doi: 10.1155/2022/2863495. eCollection 2022.
Current guidelines on atrial fibrillation (AF) emphasized that radiofrequency catheter ablation (RFCA) should be decided after fully considering its prognosis. However, a robust prediction model reflecting the complex interactions between the features affecting prognosis remains to be developed. In this paper, we propose a deep learning model for predicting the late recurrence after RFCA in patients with AF. Aiming to predict the late recurrence (LR) of AF within 1 year after pulmonary vein isolation, we designed a multimodal model based on the multilayer perceptron architecture. For quantitative evaluation, we conducted 4-fold cross-validation on data from 177 AF patients including 47 LR patients. The proposed model (area under the receiver operating characteristic curve-AUROC, 0.766) outperformed the acute patient physiologic and laboratory evaluation (APPLE) score (AUROC, 0.605), CHADS-VASc score (AUROC, 0.595), linear regression (AUROC, 0.541), logistic regression (AUROC, 0.546), extreme gradient boosting (AUROC, 0.608), and support vector machine (AUROC, 0.638). The proposed model exhibited better performance than clinical indicators (APPLE and CHADS-VASc score) and machine learning techniques (linear regression, logistic regression, extreme gradient boosting, and support vector machine). The model will support clinical decision-making for selecting good responders to the RFCA intervention.
目前关于心房颤动 (AF) 的指南强调,射频导管消融 (RFCA) 应在充分考虑其预后后决定。然而,仍需要开发一个反映影响预后的特征之间复杂相互作用的强大预测模型。在本文中,我们提出了一种用于预测 AF 患者 RFCA 后晚期复发的深度学习模型。为了预测肺静脉隔离后 1 年内 AF 的晚期复发 (LR),我们设计了一个基于多层感知机架构的多模态模型。为了进行定量评估,我们对 177 名 AF 患者的数据(包括 47 名 LR 患者)进行了 4 折交叉验证。所提出的模型(接收者操作特征曲线下的面积-AUROC,0.766)优于急性患者生理和实验室评估 (APPLE) 评分(AUROC,0.605)、CHADS-VASc 评分(AUROC,0.595)、线性回归(AUROC,0.541)、逻辑回归(AUROC,0.546)、极端梯度增强(AUROC,0.608)和支持向量机(AUROC,0.638)。与临床指标(APPLE 和 CHADS-VASc 评分)和机器学习技术(线性回归、逻辑回归、极端梯度增强和支持向量机)相比,所提出的模型表现出更好的性能。该模型将支持临床决策,以选择对 RFCA 干预反应良好的患者。