Li Qing-Quan, Yue Yang, Gao Qi-Li, Zhong Chen, Barros Joana
Department of Urban Informatics, Shenzhen University, Shenzhen, 518060 Guangdong China.
Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen, 518060 Guangdong China.
Urban Inform. 2022;1(1):5. doi: 10.1007/s44212-022-00003-3. Epub 2022 Sep 9.
Recent theoretical and methodological advances in activity space and big data provide new opportunities to study socio-spatial segregation. This review first provides an overview of the literature in terms of measurements, spatial patterns, underlying causes, and social consequences of spatial segregation. These studies are mainly place-centred and static, ignoring the segregation experience across various activity spaces due to the dynamism of movements. In response to this challenge, we highlight the work in progress toward a new paradigm for segregation studies. Specifically, this review presents how and the extent to which activity space methods can advance segregation research from a people-based perspective. It explains the requirements of mobility-based methods for quantifying the dynamics of segregation due to high movement within the urban context. It then discusses and illustrates a dynamic and multi-dimensional framework to show how big data can enhance understanding segregation by capturing individuals' spatio-temporal behaviours. The review closes with new directions and challenges for segregation research using big data.
活动空间和大数据领域近期的理论与方法进展为研究社会空间隔离提供了新机遇。本综述首先从空间隔离的测量、空间模式、潜在原因及社会后果等方面对相关文献进行了概述。这些研究主要以地点为中心且较为静态,由于人们活动的动态性,忽略了不同活动空间中的隔离体验。针对这一挑战,我们着重介绍了隔离研究新范式的进展情况。具体而言,本综述阐述了活动空间方法如何以及在何种程度上能从以人为本的视角推动隔离研究。它解释了基于移动性的方法在量化城市环境中因高度移动导致的隔离动态变化方面的要求。接着,讨论并说明了一个动态的多维框架,以展示大数据如何通过捕捉个体的时空行为来增进对隔离的理解。综述最后提出了利用大数据进行隔离研究的新方向和挑战。