Suppr超能文献

对 1.8 亿选民的党派分类测量。

The measurement of partisan sorting for 180 million voters.

机构信息

Institute for Quantitative Social Science, Harvard University, Cambridge, MA, USA.

Department of Government, Harvard University, Cambridge, MA, USA.

出版信息

Nat Hum Behav. 2021 Aug;5(8):998-1008. doi: 10.1038/s41562-021-01066-z. Epub 2021 Mar 8.

Abstract

Segregation across social groups is an enduring feature of nearly all human societies and is associated with numerous social maladies. In many countries, reports of growing geographic political polarization raise concerns about the stability of democratic governance. Here, using advances in spatial data computation, we measure individual partisan segregation by calculating the local residential segregation of every registered voter in the United States, creating a spatially weighted measure for more than 180 million individuals. With these data, we present evidence of extensive partisan segregation in the country. A large proportion of voters live with virtually no exposure to voters from the other party in their residential environment. Such high levels of partisan isolation can be found across a range of places and densities and are distinct from racial and ethnic segregation. Moreover, Democrats and Republicans living in the same city, or even the same neighbourhood, are segregated by party.

摘要

社会群体之间的隔离是几乎所有人类社会的一个持久特征,它与许多社会弊病有关。在许多国家,有关地理政治极化日益加剧的报告引发了人们对民主治理稳定性的担忧。在这里,我们利用空间数据计算的进展,通过计算美国每一位注册选民的当地居住隔离程度来衡量个人党派隔离程度,为超过 1.8 亿人创建了一个空间加权指标。有了这些数据,我们就有了美国党派隔离程度的充分证据。很大一部分选民在居住环境中几乎没有与其他党派选民接触的机会。在各种地方和密度下都可以发现如此高程度的党派隔离,而且与种族和族裔隔离不同。此外,居住在同一城市甚至同一街区的民主党人和共和党人也因党派而被隔离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验