Suppr超能文献

被动运动期间的脑电图变化可改善基于脑机接口的感觉反馈校准中的运动想象特征提取。

EEG changes during passive movements improve the motor imagery feature extraction in BCIs-based sensory feedback calibration.

机构信息

Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil.

Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo, 29075-910 Vitoria, Brazil.

出版信息

J Neural Eng. 2023 Feb 15;20(1). doi: 10.1088/1741-2552/acb73b.

Abstract

This work proposes a method for two calibration schemes based on sensory feedback to extract reliable motor imagery (MI) features, and provide classification outputs more correlated to the user's intention.After filtering the raw electroencephalogram (EEG), a two-step method for spatial feature extraction by using the Riemannian covariance matrices (RCM) method and common spatial patterns is proposed here. It uses EEG data from trials providing feedback, in an intermediate step composed of bothth nearest neighbors and probability analyses, to find periods of time in which the user probably performed well the MI task without feedback. These periods are then used to extract features with better separability, and train a classifier for MI recognition. For evaluation, an in-house dataset with eight healthy volunteers and two post-stroke patients that performed lower-limb MI, and consequently received passive movements as feedback was used. Other popular public EEG datasets (such as BCI Competition IV dataset IIb, among others) from healthy subjects that executed upper-and lower-limbs MI tasks under continuous visual sensory feedback were further used.The proposed system based on the Riemannian geometry method in two-steps (RCM-RCM) outperformed significantly baseline methods, reaching average accuracy up to 82.29%. These findings show that EEG data on periods providing passive movement can be used to contribute greatly during MI feature extraction.Unconscious brain responses elicited over the sensorimotor areas may be avoided or greatly reduced by applying our approach in MI-based brain-computer interfaces (BCIs). Therefore, BCI's outputs more correlated to the user's intention can be obtained.

摘要

这项工作提出了两种基于感觉反馈的校准方案,以提取可靠的运动想象 (MI) 特征,并提供与用户意图更相关的分类输出。在对原始脑电图 (EEG) 进行滤波后,提出了一种使用黎曼协方差矩阵 (RCM) 方法和常见空间模式的两步空间特征提取方法。它使用提供反馈的试验中的 EEG 数据,在由最近邻和概率分析组成的中间步骤中,找到用户在没有反馈的情况下可能很好地执行 MI 任务的时间段。然后,这些时间段用于提取具有更好可分离性的特征,并训练 MI 识别分类器。为了进行评估,使用了一个内部数据集,该数据集由八名健康志愿者和两名执行下肢 MI 的中风后患者组成,他们随后收到了被动运动作为反馈。还进一步使用了其他流行的公共 EEG 数据集(例如 BCI 竞赛 IV 数据集 IIb 等),这些数据集来自执行上肢和下肢 MI 任务的健康受试者,在连续视觉感觉反馈下进行。基于两步黎曼几何方法的提出的系统 (RCM-RCM) 明显优于基线方法,平均准确率高达 82.29%。这些发现表明,在提供被动运动的时间段上的 EEG 数据可以在 MI 特征提取过程中做出巨大贡献。通过应用我们在基于 MI 的脑机接口 (BCI) 中的方法,可以避免或大大减少传感器运动区域中产生的无意识大脑反应。因此,可以获得与用户意图更相关的 BCI 输出。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验