Weber Moritz L, Lole Gaurav, Kormanyos Attila, Schwiers Alexander, Heymann Lisa, Speck Florian D, Meyer Tobias, Dittmann Regina, Cherevko Serhiy, Jooss Christian, Baeumer Christoph, Gunkel Felix
Peter Grünberg Institute (PGI-7) and Jülich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Jülich GmbH, Jülich 52425, Germany.
Institute of Materials Physics, University of Göttingen, Göttingen 37077, Germany.
J Am Chem Soc. 2022 Oct 5;144(39):17966-17979. doi: 10.1021/jacs.2c07226. Epub 2022 Sep 21.
The stability of perovskite oxide catalysts for the oxygen evolution reaction (OER) plays a critical role in their applicability in water splitting concepts. Decomposition of perovskite oxides under applied potential is typically linked to cation leaching and amorphization of the material. However, structural changes and phase transformations at the catalyst surface were also shown to govern the activity of several perovskite electrocatalysts under applied potential. Hence, it is crucial for the rational design of durable perovskite catalysts to understand the interplay between the formation of active surface phases and stability limitations under OER conditions. In the present study, we reveal a surface-dominated activation and deactivation mechanism of the prominent electrocatalyst LaSrCoO under steady-state OER conditions. Using a multiscale microscopy and spectroscopy approach, we identify the evolving Co-oxyhydroxide as catalytically active surface species and La-hydroxide as inactive species involved in the transient degradation behavior of the catalyst. While the leaching of Sr results in the formation of mixed surface phases, which can be considered as a part of the active surface, the gradual depletion of Co from a self-assembled active CoO(OH) phase and the relative enrichment of passivating La(OH) at the electrode surface result in the failure of the perovskite catalyst under applied potential.
钙钛矿氧化物催化剂用于析氧反应(OER)的稳定性在其应用于水分解概念中起着关键作用。在施加电势下钙钛矿氧化物的分解通常与阳离子浸出和材料的非晶化有关。然而,催化剂表面的结构变化和相变也被证明在施加电势下控制着几种钙钛矿电催化剂的活性。因此,对于合理设计耐用的钙钛矿催化剂来说,了解活性表面相的形成与OER条件下稳定性限制之间的相互作用至关重要。在本研究中,我们揭示了在稳态OER条件下突出的电催化剂LaSrCoO的表面主导的活化和失活机制。使用多尺度显微镜和光谱方法,我们确定了不断演变的羟基氧化钴为催化活性表面物种,而氢氧化镧为参与催化剂瞬态降解行为的非活性物种。虽然Sr的浸出导致形成混合表面相,这可被视为活性表面的一部分,但自组装活性CoO(OH)相中的Co逐渐耗尽以及电极表面钝化La(OH)的相对富集导致钙钛矿催化剂在施加电势下失效。