Bornet Aline, Moreno-García Pavel, Dutta Abhijit, Kong Ying, Liechti Mike, Vesztergom Soma, Arenz Matthias, Broekmann Peter
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland.
MTA-ELTE Momentum Interfacial Electrochemistry Research Group, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest 1117, Hungary.
ACS Catal. 2024 Nov 13;14(23):17331-17346. doi: 10.1021/acscatal.4c05447. eCollection 2024 Dec 6.
Oxygen evolution reaction (OER) catalyst stability metrics derived from aqueous model systems (AMSs) prove valuable only if they are transferable to technical membrane electrode assembly (MEA) settings. Currently, there is consensus that stability data derived from ubiquitous rotating disk electrode (RDE)-based investigations substantially overestimate material degradation mainly due to the nonideal inertness of catalyst-backing electrode materials as well as bubble shielding of the catalyst by evolved oxygen. Despite the independently developed understanding of these two processes, their interplay and relative impact on intrinsic and operational material stability have not yet been established. Herein, we employ an inverted RDE-based approach coupled with online gas chromatographic quantification that exploits buoyancy and anode hydrophilicity existing under operating acidic OER conditions and excludes the influence of bubble retention on the surface of the catalyst. This approach thus allows us to dissect the degradation process occurring during the RDE-based OER stability studies. We demonstrate that the stability discrepancy between galvanostatic nanoparticle (NP)-based RDE and MEA data does not originate from the accumulation of bubbles in the catalyst layer during water oxidation but from the utilization of corrosion-prone substrate materials in the AMS. Moreover, we provide mechanistic insights into the degradation process and devise experimental measures to mitigate or circumvent RDE-related limitations when the technique is to be applied to an OER catalyst stability assessment. These findings should facilitate the transferability between AMS and MEA approaches and promote further development of the latter.
只有当从水相模型系统(AMSs)得出的析氧反应(OER)催化剂稳定性指标能够转移到技术膜电极组件(MEA)设置中时,它们才具有价值。目前,人们普遍认为,基于旋转圆盘电极(RDE)的广泛研究得出的稳定性数据大大高估了材料降解,这主要是由于催化剂支撑电极材料的非理想惰性以及析出的氧气对催化剂的气泡屏蔽作用。尽管对这两个过程有独立的认识,但它们之间的相互作用以及对本征和操作材料稳定性的相对影响尚未确定。在此,我们采用一种基于倒置RDE的方法,并结合在线气相色谱定量分析,该方法利用了在酸性OER操作条件下存在的浮力和阳极亲水性,并排除了气泡在催化剂表面滞留的影响。因此,这种方法使我们能够剖析基于RDE的OER稳定性研究过程中发生的降解过程。我们证明,基于恒电流纳米颗粒(NP)的RDE和MEA数据之间的稳定性差异并非源于水氧化过程中催化剂层中气泡的积累,而是源于AMS中使用了易腐蚀的基底材料。此外,我们提供了降解过程的机理见解,并设计了实验措施,以减轻或规避该技术应用于OER催化剂稳定性评估时与RDE相关的局限性。这些发现应有助于AMS和MEA方法之间的可转移性,并促进后者的进一步发展。