Yu Haili, Wang Tiejun, Skidmore Andrew, Heurich Marco, Bässler Claus
Faculty of Geo-Information Science and Earth Observation, University of Twente, 7514 AE Enschede, The Netherlands.
Department of Earth and Environmental Science, Macquarie University, Sydney 2109, Australia.
J Fungi (Basel). 2022 Sep 19;8(9):981. doi: 10.3390/jof8090981.
Fungi are a hyper-diverse kingdom that contributes significantly to the regulation of the global carbon and nutrient cycle. However, our understanding of the distribution of fungal diversity is often hindered by a lack of data, especially on a large spatial scale. Open biodiversity data may provide a solution, but concerns about the potential spatial and temporal bias in species occurrence data arising from different observers and sampling protocols challenge their utility. The theory of species accumulation curves predicts that the cumulative number of species reaches an asymptote when the sampling effort is sufficiently large. Thus, we hypothesize that open biodiversity data could be used to reveal large-scale macrofungal diversity patterns if these datasets are accumulated long enough. Here, we tested our hypothesis with 50 years of macrofungal occurrence records in Norway and Sweden that were downloaded from the Global Biodiversity Information Facility (GBIF). We first grouped the data into five temporal subsamples with different cumulative sampling efforts (i.e., accumulation of data for 10, 20, 30, 40 and 50 years). We then predicted the macrofungal diversity and distribution at each subsample using the maximum entropy (MaxEnt) species distribution model. The results revealed that the cumulative number of macrofungal species stabilized into distinct distribution patterns with localized hotspots of predicted macrofungal diversity with sampling efforts greater than approximately 30 years. Our research demonstrates the utility and importance of the long-term accumulated open biodiversity data in studying macrofungal diversity and distribution at the national level.
真菌是一个高度多样化的王国,对全球碳和养分循环的调节起着重要作用。然而,我们对真菌多样性分布的理解常常受到数据缺乏的阻碍,尤其是在大空间尺度上。开放的生物多样性数据可能提供一种解决方案,但对不同观察者和采样协议产生的物种出现数据中潜在的空间和时间偏差的担忧,对其效用提出了挑战。物种积累曲线理论预测,当采样努力足够大时,物种的累积数量会达到渐近线。因此,我们假设,如果这些数据集积累的时间足够长,开放的生物多样性数据可用于揭示大型宏观真菌的多样性模式。在这里,我们利用从全球生物多样性信息机构(GBIF)下载的挪威和瑞典50年的宏观真菌出现记录来检验我们的假设。我们首先将数据分组为五个具有不同累积采样努力的时间子样本(即数据积累10、20、30、40和50年)。然后,我们使用最大熵(MaxEnt)物种分布模型预测每个子样本中的宏观真菌多样性和分布。结果表明,当采样努力超过约30年时,宏观真菌物种的累积数量稳定为不同的分布模式,并出现了预测的宏观真菌多样性的局部热点。我们的研究证明了长期积累的开放生物多样性数据在研究国家层面宏观真菌多样性和分布方面的效用和重要性。