Suppr超能文献

蛋白结晶介导的高性能可打印导电有机水凝胶的自增强。

Protein Crystallization-Mediated Self-Strengthening of High-Performance Printable Conducting Organohydrogels.

机构信息

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.

National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.

出版信息

ACS Nano. 2022 Nov 22;16(11):17998-18008. doi: 10.1021/acsnano.2c07823. Epub 2022 Sep 22.

Abstract

Conductive polymers have many advanced applications, but there is still an important target in developing a general and straightforward strategy for printable, mechanically stable, and durable organohydrogels with typical conducting polymers of, for example, polypyrrole, polyaniline, or poly(3,4-ethylenedioxythiophene). Here we report a protein crystallization-mediated self-strengthening strategy to fabricate printable conducting organohydrogels with the combination of rational photochemistry design. Such organohydrogels are one-step prepared via rapidly and orthogonally controllable photopolymerizations of pyrroles and gelatin protein in tens of seconds. As-prepared conducting organohydrogels are patterned and printed to complicated structures via shadow-mask lithography and 3D extrusion technology. The mild photocatalytic system gives the transition metal carbide/nitride (MXene) component high stability during the oxidative preparation process and storage. Controlling water evaporation promotes gelatin crystallization in the as-prepared organohydrogels that significantly self-strengthens their mechanical property and stability in a broad temperature range and durability against continuous friction treatment without introducing guest functional materials. Also, these organohydrogels have commercially electromagnetic shielding, thermal conducting properties, and temperature- and light-responsibility. To further demonstrate the merits of this simple strategy and as-prepared organohydrogels, prism arrays, as proofs-of-concept, are printed and applied to make wearable triboelectric nanogenerators. This self-strengthening process and 3D-printability can greatly improve their voltage, charge, and current output performances compared to the undried and flat samples.

摘要

导电聚合物具有许多先进的应用,但在开发通用且直接的策略方面仍然存在一个重要目标,即用例如聚吡咯、聚苯胺或聚(3,4-亚乙基二氧噻吩)等典型的导电聚合物来制备可打印、机械稳定和耐用的有机水凝胶。在这里,我们报告了一种蛋白质结晶介导的自增强策略,通过合理的光化学设计来制备可打印的导电有机水凝胶。这种有机水凝胶可以通过在几十秒内快速且正交可控的吡咯和明胶蛋白光聚合一步制备。通过阴影掩模光刻和 3D 挤出技术,可以将制备的导电有机水凝胶图案化和打印到复杂的结构中。温和的光催化体系在氧化制备过程和储存过程中赋予了过渡金属碳化物/氮化物(MXene)组分高稳定性。控制水蒸发促进了制备的有机水凝胶中明胶的结晶,从而在很宽的温度范围内和连续摩擦处理的耐久性方面显著增强了其机械性能和稳定性,而无需引入客体功能材料。此外,这些有机水凝胶具有商业电磁屏蔽、导热性能以及温度和光响应性。为了进一步展示这种简单策略和制备的有机水凝胶的优点,我们打印了棱柱阵列作为概念验证,并应用于制造可穿戴摩擦纳米发电机。与未干燥和平整的样品相比,这种自增强过程和 3D 可打印性可以大大提高它们的电压、电荷和电流输出性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验