Suppr超能文献

正交光化学辅助打印 3D 坚韧可拉伸导电水凝胶。

Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels.

机构信息

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.

School of Astronautics, Northwestern Polytechnical University, Xi'an, China.

出版信息

Nat Commun. 2021 Apr 7;12(1):2082. doi: 10.1038/s41467-021-21869-y.

Abstract

3D-printing tough conductive hydrogels (TCHs) with complex structures is still a challenging task in related fields due to their inherent contrasting multinetworks, uncontrollable and slow polymerization of conductive components. Here we report an orthogonal photochemistry-assisted printing (OPAP) strategy to make 3D TCHs in one-pot via the combination of rational visible-light-chemistry design and reliable extrusion printing technique. This orthogonal chemistry is rapid, controllable, and simultaneously achieve the photopolymerization of EDOT and phenol-coupling reaction, leading to the construction of tough hydrogels in a short time (t ~30 s). As-prepared TCHs are tough, conductive, stretchable, and anti-freezing. This template-free 3D printing can process TCHs to arbitrary structures during the fabrication process. To further demonstrate the merits of this simple OPAP strategy and TCHs, 3D-printed TCHs hydrogel arrays and helical lines, as proofs-of-concept, are made to assemble high-performance pressure sensors and a temperature-responsive actuator. It is anticipated that this one-pot rapid, controllable OPAP strategy opens new horizons to tough hydrogels.

摘要

3D 打印具有复杂结构的坚韧导电水凝胶(TCH)仍然是相关领域的一项具有挑战性的任务,因为它们具有固有的对比多网络、不可控和导电成分聚合缓慢。在这里,我们报告了一种正交光化学辅助打印(OPAP)策略,通过合理的可见光化学设计和可靠的挤压打印技术的结合,在一锅法中制备 3D TCH。这种正交化学快速、可控,并同时实现 EDOT 的光聚合和酚偶联反应,从而在短时间内(t~30s)构建坚韧的水凝胶。所制备的 TCH 坚韧、导电、可拉伸和抗冻结。这种无模板的 3D 打印可以在制造过程中将 TCH 加工成任意结构。为了进一步展示这种简单的 OPAP 策略和 TCH 的优点,制作了 3D 打印 TCH 水凝胶阵列和螺旋线作为概念验证,以组装高性能压力传感器和温度响应执行器。预计这种一锅法快速、可控的 OPAP 策略为坚韧水凝胶开辟了新的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19df/8027177/0b6becae8e4b/41467_2021_21869_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验