Suppr超能文献

加拿大 COVID-19 感染病例:短期预测模型。

COVID-19 infected cases in Canada: Short-term forecasting models.

机构信息

Turbulence and Energy Lab, Ed Lumley Centre for Engineering Innovation, University of Windsor, Windsor, Ontario, Canada.

Department of Statistical & Actuarial Sciences, Faculty of Science, Western University, London, Ontario, Canada.

出版信息

PLoS One. 2022 Sep 22;17(9):e0270182. doi: 10.1371/journal.pone.0270182. eCollection 2022.

Abstract

Governments have implemented different interventions and response models to combat the spread of COVID-19. The necessary intensity and frequency of control measures require us to project the number of infected cases. Three short-term forecasting models were proposed to predict the total number of infected cases in Canada for a number of days ahead. The proposed models were evaluated on how their performance degrades with increased forecast horizon, and improves with increased historical data by which to estimate them. For the data analyzed, our results show that 7 to 10 weeks of historical data points are enough to produce good fits for a two-weeks predictive model of infected case numbers with a NRMSE of 1% to 2%. The preferred model is an important quick-deployment tool to support data-informed short-term pandemic related decision-making at all levels of governance.

摘要

政府已经实施了不同的干预和应对模式来控制 COVID-19 的传播。控制措施的必要强度和频率要求我们预测感染病例的数量。提出了三个短期预测模型来预测加拿大未来几天内感染病例的总数。评估了所提出的模型,以了解它们的性能随着预测期限的增加而如何下降,并随着可用于估计的历史数据的增加而如何提高。对于分析的数据,我们的结果表明,有 7 到 10 周的历史数据点就足以产生良好的拟合,对于感染病例数量的两周预测模型,NRMSE 为 1%到 2%。首选模型是支持各级治理中基于数据的短期大流行相关决策的重要快速部署工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0301/9499295/2bbc9a1d8704/pone.0270182.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验