基于不同肿瘤体积大小的头颈鳞状细胞癌预后预测的影像组学:一种投票集成机器学习方法

Radiomics from Various Tumour Volume Sizes for Prognosis Prediction of Head and Neck Squamous Cell Carcinoma: A Voted Ensemble Machine Learning Approach.

作者信息

Tang Fuk-Hay, Cheung Eva-Yi-Wah, Wong Hiu-Lam, Yuen Chun-Ming, Yu Man-Hei, Ho Pui-Ching

机构信息

School of Medical and Health Sciences, Tung Wah College, Hong Kong, China.

出版信息

Life (Basel). 2022 Sep 5;12(9):1380. doi: 10.3390/life12091380.

Abstract

Background: Traditionally, cancer prognosis was determined by tumours size, lymph node spread and presence of metastasis (TNM staging). Radiomics of tumour volume has recently been used for prognosis prediction. In the present study, we evaluated the effect of various sizes of tumour volume. A voted ensemble approach with a combination of multiple machine learning algorithms is proposed for prognosis prediction for head and neck squamous cell carcinoma (HNSCC). Methods: A total of 215 HNSCC CT image sets with radiotherapy structure sets were acquired from The Cancer Imaging Archive (TCIA). Six tumour volumes, including gross tumour volume (GTV), diminished GTV, extended GTV, planning target volume (PTV), diminished PTV and extended PTV were delineated. The extracted radiomics features were analysed by decision tree, random forest, extreme boost, support vector machine and generalized linear algorithms. A voted ensemble machine learning (VEML) model that optimizes the above algorithms was used. The receiver operating characteristic area under the curve (ROC-AUC) were used to compare the performance of machine learning methods, including accuracy, sensitivity and specificity. Results: The VEML model demonstrated good prognosis prediction ability for all sizes of tumour volumes with reference to GTV and PTV with high accuracy of up to 88.3%, sensitivity of up to 79.9% and specificity of up to 96.6%. There was no significant difference between the various target volumes for the prognostic prediction of HNSCC patients (chi-square test, p > 0.05). Conclusions: Our study demonstrates that the proposed VEML model can accurately predict the prognosis of HNSCC patients using radiomics features from various tumour volumes.

摘要

背景

传统上,癌症预后由肿瘤大小、淋巴结扩散和转移情况(TNM分期)决定。肿瘤体积的放射组学最近已用于预后预测。在本研究中,我们评估了不同大小肿瘤体积的影响。提出了一种结合多种机器学习算法的投票集成方法,用于头颈部鳞状细胞癌(HNSCC)的预后预测。

方法

从癌症影像存档(TCIA)获取了215套带有放射治疗结构集的HNSCC CT图像。勾勒出六个肿瘤体积,包括大体肿瘤体积(GTV)、缩小的GTV、扩大的GTV、计划靶体积(PTV)、缩小的PTV和扩大的PTV。通过决策树、随机森林、极限梯度提升、支持向量机和广义线性算法分析提取的放射组学特征。使用了优化上述算法的投票集成机器学习(VEML)模型。采用曲线下面积(ROC-AUC)来比较机器学习方法的性能,包括准确性、敏感性和特异性。

结果

VEML模型对所有大小的肿瘤体积均显示出良好的预后预测能力,以GTV和PTV为参考,准确率高达88.3%,敏感性高达79.9%,特异性高达96.6%。对于HNSCC患者的预后预测,不同靶体积之间无显著差异(卡方检验,p>0.05)。

结论

我们的研究表明,所提出的VEML模型可以使用来自不同肿瘤体积的放射组学特征准确预测HNSCC患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9848/9505304/3bee000d6ab4/life-12-01380-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索