Bang Chulmin, Bernard Galaad, Le William T, Lalonde Arthur, Kadoury Samuel, Bahig Houda
Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.
Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.
Clin Transl Radiat Oncol. 2023 Jan 31;39:100590. doi: 10.1016/j.ctro.2023.100590. eCollection 2023 Mar.
Head and neck radiotherapy induces important toxicity, and its efficacy and tolerance vary widely across patients. Advancements in radiotherapy delivery techniques, along with the increased quality and frequency of image guidance, offer a unique opportunity to individualize radiotherapy based on imaging biomarkers, with the aim of improving radiation efficacy while reducing its toxicity. Various artificial intelligence models integrating clinical data and radiomics have shown encouraging results for toxicity and cancer control outcomes prediction in head and neck cancer radiotherapy. Clinical implementation of these models could lead to individualized risk-based therapeutic decision making, but the reliability of the current studies is limited. Understanding, validating and expanding these models to larger multi-institutional data sets and testing them in the context of clinical trials is needed to ensure safe clinical implementation. This review summarizes the current state of the art of machine learning models for prediction of head and neck cancer radiotherapy outcomes.
头颈部放疗会引发严重的毒性反应,而且其疗效和耐受性在不同患者之间差异很大。放疗技术的进步,以及图像引导质量和频率的提高,为基于影像生物标志物进行个体化放疗提供了独特的机会,目的是在降低毒性的同时提高放疗疗效。各种整合临床数据和放射组学的人工智能模型在头颈部癌放疗的毒性和癌症控制结果预测方面已显示出令人鼓舞的结果。这些模型的临床应用可能会导致基于个体风险的治疗决策,但目前研究的可靠性有限。需要对头颈部癌放疗结果预测的机器学习模型进行理解、验证并将其扩展到更大的多机构数据集,并在临床试验中进行测试,以确保安全的临床应用。本综述总结了用于预测头颈部癌放疗结果的机器学习模型的当前技术水平。