基于靶区体积法的头颈部鳞状细胞癌(HNSCC)预后及复发的影像组学人工智能预测

Radiomics AI prediction for head and neck squamous cell carcinoma (HNSCC) prognosis and recurrence with target volume approach.

作者信息

Fh Tang, Cyw Chu, Eyw Cheung

机构信息

School of Medical and Health Sciences, Tung Wah College, Hong Kong, Hong Kong.

出版信息

BJR Open. 2021 Jul 5;3(1):20200073. doi: 10.1259/bjro.20200073. eCollection 2021.

Abstract

OBJECTIVES

To evaluate the performance of radiomics features extracted from planning target volume (PTV) and gross tumor volume (GTV) in the prediction of the death prognosis and cancer recurrence rate for head and neck squamous cell carcinoma (HNSCC).

METHODS

188 HNSCC patients' planning CT images with radiotherapy structures sets were acquired from Cancer Imaging Archive (TCIA). The 3D slicer (v. 4.10.2) with the PyRadiomics extension (Computational Imaging and Bioinformatics Lab, Harvard medical School) was used to extract radiomics features from the radiotherapy planning images. An in-house developed deep learning artificial neural networks (DL-ANN) model was used to predict death prognosis and cancer recurrence rate based on the features extracted from GTV and PTV of the CT images.

RESULTS

The PTV radiomics features with DL-ANN model could achieve 77.7% accuracy with overall AUC equal to 0.934 and 0.932 when predicting HNSCC-related death prognosis and cancer recurrence respectively. Furthermore, the DL-ANN model can achieve an accuracy of 74.3% with AUC equal to 0.947 and 0.956 for the HNSCC-related death prognosis and cancer recurrence respectively using GTV features.

CONCLUSION

Using both GTV and PTV radiomics features in the DL-ANN model, can aid in predicting HNSCC-related death prognosis and cancer recurrence. Clinicians may find it helpful in formulating different treatment regimens and facilitate personized medicine based on the predicted outcome when performing GTV and PTV delineation.

ADVANCES IN KNOWLEDGE

Radiomics features of GTV and PTV are reliable prognosis and recurrence predicting tools, which may help clinicians in GTV and PTV delineation to facilitate delivery of personalized treatment.

摘要

目的

评估从计划靶区(PTV)和大体肿瘤体积(GTV)中提取的影像组学特征对头颈部鳞状细胞癌(HNSCC)死亡预后和癌症复发率的预测性能。

方法

从癌症影像存档(TCIA)获取188例HNSCC患者带有放射治疗结构集的计划CT图像。使用带有PyRadiomics扩展程序(哈佛医学院计算成像与生物信息学实验室)的3D Slicer(版本4.10.2)从放射治疗计划图像中提取影像组学特征。基于从CT图像的GTV和PTV中提取的特征,使用内部开发的深度学习人工神经网络(DL-ANN)模型预测死亡预后和癌症复发率。

结果

当分别预测HNSCC相关的死亡预后和癌症复发时,PTV影像组学特征结合DL-ANN模型可达到77.7%的准确率,总体曲线下面积(AUC)分别等于0.934和0.932。此外,使用GTV特征时,DL-ANN模型对HNSCC相关的死亡预后和癌症复发分别可达到74.3%的准确率,AUC分别等于0.947和0.956。

结论

在DL-ANN模型中同时使用GTV和PTV影像组学特征有助于预测HNSCC相关的死亡预后和癌症复发。临床医生在进行GTV和PTV勾画时,根据预测结果制定不同的治疗方案并促进个性化医疗可能会发现其有帮助。

知识进展

GTV和PTV的影像组学特征是可靠的预后和复发预测工具,这可能有助于临床医生在GTV和PTV勾画时促进个性化治疗的实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53a1/8320130/43ff29653ac6/bjro.20200073.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索