Lei Li, Chen Chaoxin, Nie Haoran, Wu Xudong, Tan Daniel Q
Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou 515063, China.
Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
Molecules. 2022 Sep 17;27(18):6067. doi: 10.3390/molecules27186067.
Polymer nanodielectrics render a great material platform for exhibiting the intrinsic nature of incorporated particles, particularly semiconducting types, and their interfaces with the polymer matrix. Incorporating the oxide fillers with higher loading percentages (>40 vol%) encounters particular challenges in terms of dispersion, homogeneous distribution, and porosity from the process. This work investigated the dielectric loss and electrical conduction behaviors of composites containing semiconducting ZnO varistor particles of various concentrations using the epoxy impregnation method. The ZnO varistor particles increased the dielectric permittivity, loss, and electrical conductivity of the epoxy composites into three different regimes (0−50 vol%, 50−70 vol%, 70−100 vol%), particularly under an electric bias field or at higher temperatures. For lower loading fractions below 50 vol%, the dielectric responses are dominated by the insulating epoxy matrix. When loading fractions are between 50 and 70 vol%, the dielectric and electric responses are mostly associated with the semiconducting interfaces of ZnO varistor particles and ZnO−epoxy. At above 70 vol%, the apparent increase in the dielectric loss and conductivity is primarily associated with the conducting ZnO core forming the interconnected channels of electric conduction. The foam-agent-assisted ZnO varistor particle framework appears to be a better way of fabricating composites of filler loading above 80 vol%. A physical model using an equivalent capacitor, diode, and resistor in the epoxy composites was proposed to explain the different property behaviors.
聚合物纳米电介质为展现掺入颗粒(特别是半导体类型)及其与聚合物基体界面的内在特性提供了一个很好的材料平台。掺入较高负载百分比(>40体积%)的氧化物填料在分散、均匀分布以及工艺产生的孔隙率方面面临特殊挑战。本工作采用环氧浸渍法研究了含有不同浓度半导体氧化锌压敏电阻颗粒的复合材料的介电损耗和导电行为。氧化锌压敏电阻颗粒使环氧复合材料的介电常数、损耗和电导率在三个不同区域(0−50体积%、50−70体积%、70−100体积%)有所增加,特别是在电场偏置或较高温度下。对于低于50体积%的较低负载分数,介电响应主要由绝缘的环氧基体主导。当负载分数在50到70体积%之间时,介电和电响应主要与氧化锌压敏电阻颗粒和氧化锌 - 环氧的半导体界面有关。在70体积%以上时,介电损耗和电导率的明显增加主要与形成相互连接导电通道的导电氧化锌核有关。泡沫剂辅助的氧化锌压敏电阻颗粒骨架似乎是制备填料负载高于80体积%的复合材料的更好方法。提出了一个在环氧复合材料中使用等效电容、二极管和电阻的物理模型来解释不同的性能行为。