Department of Computer Science, Brown University, Providence, Rhode Island, USA.
Center for Biomedical Informatics, Brown University, Providence, Rhode Island, USA.
J Am Med Inform Assoc. 2022 Nov 14;29(12):2014-2022. doi: 10.1093/jamia/ocac168.
Alzheimer's disease (AD) is the most common neurodegenerative disorder with one of the most complex pathogeneses, making effective and clinically actionable decision support difficult. The objective of this study was to develop a novel multimodal deep learning framework to aid medical professionals in AD diagnosis.
We present a Multimodal Alzheimer's Disease Diagnosis framework (MADDi) to accurately detect the presence of AD and mild cognitive impairment (MCI) from imaging, genetic, and clinical data. MADDi is novel in that we use cross-modal attention, which captures interactions between modalities-a method not previously explored in this domain. We perform multi-class classification, a challenging task considering the strong similarities between MCI and AD. We compare with previous state-of-the-art models, evaluate the importance of attention, and examine the contribution of each modality to the model's performance.
MADDi classifies MCI, AD, and controls with 96.88% accuracy on a held-out test set. When examining the contribution of different attention schemes, we found that the combination of cross-modal attention with self-attention performed the best, and no attention layers in the model performed the worst, with a 7.9% difference in F1-scores.
Our experiments underlined the importance of structured clinical data to help machine learning models contextualize and interpret the remaining modalities. Extensive ablation studies showed that any multimodal mixture of input features without access to structured clinical information suffered marked performance losses.
This study demonstrates the merit of combining multiple input modalities via cross-modal attention to deliver highly accurate AD diagnostic decision support.
阿尔茨海默病(AD)是最常见的神经退行性疾病之一,其发病机制最为复杂,使得有效的、可付诸临床的决策支持变得困难。本研究的目的是开发一种新的多模态深度学习框架,以帮助医学专业人员进行 AD 诊断。
我们提出了一种多模态阿尔茨海默病诊断框架(MADDi),以从影像学、遗传学和临床数据中准确检测 AD 和轻度认知障碍(MCI)的存在。MADDi 的新颖之处在于我们使用了跨模态注意力,这种方法可以捕捉模态之间的相互作用——这是该领域以前未曾探索过的方法。我们进行了多类分类,考虑到 MCI 和 AD 之间的强相似性,这是一项具有挑战性的任务。我们与以前的最先进模型进行了比较,评估了注意力的重要性,并检查了每个模态对模型性能的贡献。
MADDi 在独立测试集上对 MCI、AD 和对照组的分类准确率达到 96.88%。在检查不同注意力方案的贡献时,我们发现跨模态注意力与自注意力的组合表现最佳,而模型中没有注意力层表现最差,F1 分数相差 7.9%。
我们的实验强调了结构化临床数据对帮助机器学习模型进行情境化和解释其余模态的重要性。广泛的消融研究表明,任何没有结构化临床信息的输入特征的多模态混合都会导致显著的性能损失。
本研究表明,通过跨模态注意力结合多个输入模态可以提供高度准确的 AD 诊断决策支持。