Suppr超能文献

大流行速度:使用机器学习和贝叶斯时间序列房室模型预测美国的 COVID-19 疫情。

Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model.

机构信息

Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, California, United States of America.

Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, United States of America.

出版信息

PLoS Comput Biol. 2021 Mar 29;17(3):e1008837. doi: 10.1371/journal.pcbi.1008837. eCollection 2021 Mar.

Abstract

Predictions of COVID-19 case growth and mortality are critical to the decisions of political leaders, businesses, and individuals grappling with the pandemic. This predictive task is challenging due to the novelty of the virus, limited data, and dynamic political and societal responses. We embed a Bayesian time series model and a random forest algorithm within an epidemiological compartmental model for empirically grounded COVID-19 predictions. The Bayesian case model fits a location-specific curve to the velocity (first derivative) of the log transformed cumulative case count, borrowing strength across geographic locations and incorporating prior information to obtain a posterior distribution for case trajectories. The compartmental model uses this distribution and predicts deaths using a random forest algorithm trained on COVID-19 data and population-level characteristics, yielding daily projections and interval estimates for cases and deaths in U.S. states. We evaluated the model by training it on progressively longer periods of the pandemic and computing its predictive accuracy over 21-day forecasts. The substantial variation in predicted trajectories and associated uncertainty between states is illustrated by comparing three unique locations: New York, Colorado, and West Virginia. The sophistication and accuracy of this COVID-19 model offer reliable predictions and uncertainty estimates for the current trajectory of the pandemic in the U.S. and provide a platform for future predictions as shifting political and societal responses alter its course.

摘要

预测 COVID-19 病例增长和死亡率对于政治领导人、企业和个人应对疫情的决策至关重要。由于病毒的新颖性、数据有限以及政治和社会反应的动态性,这项预测任务具有挑战性。我们在流行病学 compartmental 模型中嵌入了贝叶斯时间序列模型和随机森林算法,用于对 COVID-19 进行基于经验的预测。贝叶斯病例模型根据对数转换后的累计病例数的速度(一阶导数)为每个地理位置拟合一条特定的曲线,从地理位置之间借用强度,并结合先验信息,以获得病例轨迹的后验分布。该 compartmental 模型使用该分布,并使用针对 COVID-19 数据和人口水平特征进行训练的随机森林算法来预测死亡人数,从而提供美国各州的病例和死亡人数的每日预测和区间估计。我们通过在更长的疫情期间对模型进行训练,并在 21 天的预测中计算其预测准确性来评估该模型。通过比较三个独特的地点(纽约、科罗拉多和西弗吉尼亚),说明了各州之间预测轨迹和相关不确定性的巨大差异。该 COVID-19 模型的复杂性和准确性为美国大流行的当前轨迹提供了可靠的预测和不确定性估计,并为未来的预测提供了平台,因为政治和社会反应的变化改变了其进程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929a/8031749/deabf480de01/pcbi.1008837.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验