Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.
Institute for Advanced Biosciences, Yamagata, Japan.
Methods Mol Biol. 2023;2571:241-255. doi: 10.1007/978-1-0716-2699-3_21.
Mass spectrometry (MS)-based metabolomics provides high-dimensional datasets; that is, the data include various metabolite features. Data analysis begins by converting the raw data obtained from the MS to produce a data matrix (metabolite × concentrations). This is followed by several steps, such as peak integration, alignment of multiple data, metabolite identification, and calculation of metabolite concentrations. Each step yields the analytical results and the accompanying information used for the quality assessment of the anterior steps. Thus, the measurement quality can be analyzed through data processing. Here, we introduce a typical data processing procedure and describe a method to utilize the intermediate data as quality control. Subsequently, commonly used data analysis methods for metabolomics data, such as statistical analyses, are also introduced.
基于质谱(MS)的代谢组学提供了高维数据集;也就是说,这些数据包括各种代谢物特征。数据分析首先将从 MS 获得的原始数据转换为产生数据矩阵(代谢物×浓度)。然后进行几个步骤,如峰积分、多个数据的对齐、代谢物鉴定和代谢物浓度的计算。每个步骤都会产生分析结果以及用于前面步骤质量评估的伴随信息。因此,可以通过数据处理分析测量质量。在这里,我们介绍了一种典型的数据处理过程,并描述了一种利用中间数据作为质量控制的方法。随后,还介绍了代谢组学数据常用的数据分析方法,如统计分析。