Suppr超能文献

基于液相色谱-质谱联用的靶向代谢组学中的数据处理与分析。

Data Processing and Analysis in Liquid Chromatography-Mass Spectrometry-Based Targeted Metabolomics.

机构信息

Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.

Institute for Advanced Biosciences, Yamagata, Japan.

出版信息

Methods Mol Biol. 2023;2571:241-255. doi: 10.1007/978-1-0716-2699-3_21.

Abstract

Mass spectrometry (MS)-based metabolomics provides high-dimensional datasets; that is, the data include various metabolite features. Data analysis begins by converting the raw data obtained from the MS to produce a data matrix (metabolite × concentrations). This is followed by several steps, such as peak integration, alignment of multiple data, metabolite identification, and calculation of metabolite concentrations. Each step yields the analytical results and the accompanying information used for the quality assessment of the anterior steps. Thus, the measurement quality can be analyzed through data processing. Here, we introduce a typical data processing procedure and describe a method to utilize the intermediate data as quality control. Subsequently, commonly used data analysis methods for metabolomics data, such as statistical analyses, are also introduced.

摘要

基于质谱(MS)的代谢组学提供了高维数据集;也就是说,这些数据包括各种代谢物特征。数据分析首先将从 MS 获得的原始数据转换为产生数据矩阵(代谢物×浓度)。然后进行几个步骤,如峰积分、多个数据的对齐、代谢物鉴定和代谢物浓度的计算。每个步骤都会产生分析结果以及用于前面步骤质量评估的伴随信息。因此,可以通过数据处理分析测量质量。在这里,我们介绍了一种典型的数据处理过程,并描述了一种利用中间数据作为质量控制的方法。随后,还介绍了代谢组学数据常用的数据分析方法,如统计分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验