Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA.
Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA.
Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2209607119. doi: 10.1073/pnas.2209607119. Epub 2022 Sep 26.
Blood stream infections (BSIs) cause high mortality, and their rapid detection remains a significant diagnostic challenge. Timely and informed administration of antibiotics can significantly improve patient outcomes. However, blood culture, which takes up to 5 d for a negative result, followed by PCR remains the gold standard in diagnosing BSI. Here, we introduce a new approach to blood-based diagnostics where large blood volumes can be rapidly dried, resulting in inactivation of the inhibitory components in blood. Further thermal treatments then generate a physical microscale and nanoscale fluidic network inside the dried matrix to allow access to target nucleic acid. The amplification enzymes and primers initiate the reaction within the dried blood matrix through these networks, precluding any need for conventional nucleic acid purification. High heme background is confined to the solid phase, while amplicons are enriched in the clear supernatant (liquid phase), giving fluorescence change comparable to purified DNA reactions. We demonstrate single-molecule sensitivity using a loop-mediated isothermal amplification reaction in our platform and detect a broad spectrum of pathogens, including gram-positive methicillin-resistant and methicillin-susceptible bacteria, gram-negative bacteria, and (fungus) from whole blood with a limit of detection (LOD) of 1.2 colony-forming units (CFU)/mL from 0.8 to 1 mL of starting blood volume. We validated our assay using 63 clinical samples (100% sensitivity and specificity) and significantly reduced sample-to-result time from over 20 h to <2.5 h. The reduction in instrumentation complexity and costs compared to blood culture and alternate molecular diagnostic platforms can have broad applications in healthcare systems in developed world and resource-limited settings.
血流感染(BSI)会导致高死亡率,其快速检测仍然是一个重大的诊断挑战。及时和明智地使用抗生素可以显著改善患者的预后。然而,血液培养需要长达 5 天才能得出阴性结果,随后进行 PCR 仍然是诊断 BSI 的金标准。在这里,我们介绍了一种新的血液诊断方法,该方法可以快速干燥大量血液,从而使血液中的抑制性成分失活。进一步的热处理会在干燥的基质内产生物理微观和纳米级的流体网络,从而使目标核酸能够进入。扩增酶和引物通过这些网络在干燥的血液基质内启动反应,从而无需进行常规的核酸纯化。高血红素背景被限制在固相内,而扩增子则富集在澄清的上清液(液相)中,这与纯化 DNA 反应的荧光变化相当。我们在平台中使用环介导等温扩增反应证明了单分子灵敏度,并从 0.8 至 1 毫升起始血液量中检测到了广泛的病原体,包括耐甲氧西林和敏感的革兰氏阳性菌、革兰氏阴性菌和真菌,检测限(LOD)为 1.2 个菌落形成单位(CFU)/毫升。我们使用 63 个临床样本验证了我们的检测方法(100%的敏感性和特异性),并将样本到结果的时间从超过 20 小时缩短到<2.5 小时。与血液培养和替代分子诊断平台相比,该检测方法在仪器复杂性和成本方面的降低,可以在发达国家和资源有限的地区的医疗保健系统中得到广泛应用。