Jones Michael S, Zhu Zhenchen, Bajracharya Aahana, Luor Austin, Peelle Jonathan E
Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA.
Apert Neuro. 2022;2:1-25. doi: 10.52294/apertureneuro.2022.2.nxor2026.
Subject motion during fMRI can affect our ability to accurately measure signals of interest. In recent years, frame censoring-that is, statistically excluding motion-contaminated data within the general linear model using nuisance regressors-has appeared in several task-based fMRI studies as a mitigation strategy. However, there have been few systematic investigations quantifying its efficacy. In the present study, we compared the performance of frame censoring to several other common motion correction approaches for task-based fMRI using open data and reproducible workflows. We analyzed eight publicly available datasets representing 11 distinct tasks in child, adolescent, and adult participants. Performance was quantified using maximum -values in group analyses, and region of interest-based mean activation and split-half reliability in single subjects. We compared frame censoring across several thresholds to the use of 6 and 24 canonical motion regressors, wavelet despiking, robust weighted least squares, and untrained ICA-based denoising, for a total of 240 separate analyses. Thresholds used to identify censored frames were based on both motion estimates (FD) and image intensity changes (DVARS). Relative to standard motion regressors, we found consistent improvements for modest amounts of frame censoring (e.g., 1-2% data loss), although these gains were frequently comparable to what could be achieved using other techniques. Importantly, no single approach consistently outperformed the others across all datasets and tasks. These findings suggest that the choice of a motion mitigation strategy depends on both the dataset and the outcome metric of interest.
功能磁共振成像(fMRI)过程中的受试者运动可能会影响我们准确测量感兴趣信号的能力。近年来,帧审查——即使用干扰回归变量在一般线性模型中统计排除受运动污染的数据——已在一些基于任务的fMRI研究中作为一种缓解策略出现。然而,很少有系统的研究来量化其效果。在本研究中,我们使用开放数据和可重复的工作流程,将帧审查的性能与其他几种用于基于任务的fMRI的常见运动校正方法进行了比较。我们分析了八个公开可用的数据集,这些数据集代表了儿童、青少年和成人参与者的11个不同任务。使用组分析中的最大值以及单个体受试者中基于感兴趣区域的平均激活和分半信度来量化性能。我们将几个阈值下的帧审查与使用6个和24个规范运动回归变量、小波去尖峰、稳健加权最小二乘法以及基于未训练独立成分分析(ICA)的去噪方法进行了比较,总共进行了240次单独分析。用于识别审查帧的阈值基于运动估计(FD)和图像强度变化(DVARS)。相对于标准运动回归变量,我们发现适度的帧审查(例如,1 - 2%的数据丢失)能带来一致的改善,尽管这些收益通常与使用其他技术所能达到的效果相当。重要的是,在所有数据集和任务中,没有一种方法始终优于其他方法。这些发现表明,运动缓解策略的选择取决于数据集和感兴趣的结果指标。