Suppr超能文献

基于人工神经网络的银屑病对冠心病影响的预测与验证

Prediction and verification of the effect of psoriasis on coronary heart disease based on artificial neural network.

作者信息

Li An-Hai, Qi Meng-Meng, Li Wen-Wen, Yu Xiao-Qian, Yang Li-Li, Wang Jun, Li Ding

机构信息

Department of Dermatology, Qingdao Huangdao District Central Hospital, Qingdao, Shandong, China.

Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.

出版信息

Heliyon. 2022 Sep 17;8(9):e10677. doi: 10.1016/j.heliyon.2022.e10677. eCollection 2022 Sep.

Abstract

BACKGROUND AND OBJECTIVES

Psoriasis is an independent risk factor for coronary heart disease. It is important for predicting the complications of coronary heart disease in patients with psoriasis.

METHODS

In this study, related cases were collected from the case system of Qingdao University, and commonly used laboratory indicators were extracted. Artificial neural network (ANN) and logistics regression analysis were used to learn to distinguish psoriasis patients, coronary heart disease patients, and psoriasis patients with coronary heart disease. We identified independent risk factors for coronary heart disease in psoriasis patients that exacerbate coronary heart disease symptoms in patients with psoriasis.

FINDINGS

Analysis shows that the accuracy of the ANN model was higher than 79%. It was determined that age, chlorinated, phosphorus, magnesium, low-density lipoprotein, triglycerides, high density lipoprotein and total cholesterol are independent risk factors for coronary heart disease in patients with psoriasis. Similarly, gender, age, chlorinated, magnesium, triglycerides, and high density lipoprotein are risk factors that exacerbate coronary heart disease symptoms in patients with psoriasis.

INTERPRETATION

The presented approach is a valuable tool for identifying psoriasis patients, coronary heart disease patients, and psoriasis patients with coronary heart disease. It can also serve as a support tool clinicians in the diagnostic process, by providing an outstanding support in the diagnostics prevention of coronary heart disease in psoriasis.

摘要

背景与目的

银屑病是冠心病的独立危险因素。预测银屑病患者冠心病并发症具有重要意义。

方法

本研究从青岛大学病例系统中收集相关病例,提取常用实验室指标。采用人工神经网络(ANN)和逻辑回归分析来学习区分银屑病患者、冠心病患者以及合并冠心病的银屑病患者。我们确定了银屑病患者中加重冠心病症状的冠心病独立危险因素。

研究结果

分析表明,ANN模型的准确率高于79%。确定年龄、氯、磷、镁、低密度脂蛋白、甘油三酯、高密度脂蛋白和总胆固醇是银屑病患者冠心病的独立危险因素。同样,性别、年龄、氯、镁、甘油三酯和高密度脂蛋白是加重银屑病患者冠心病症状的危险因素。

解读

所提出的方法是识别银屑病患者、冠心病患者以及合并冠心病的银屑病患者的有价值工具。它还可以作为临床医生诊断过程中的辅助工具,通过在银屑病患者冠心病诊断预防方面提供有力支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e21/9508559/16a74dd3bead/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验