Suppr超能文献

使用潜在剖面分析识别妊娠化学混合物与儿童神经发育之间的关联。

Using Latent Profile Analysis to Identify Associations Between Gestational Chemical Mixtures and Child Neurodevelopment.

机构信息

From the Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA.

出版信息

Epidemiology. 2023 Jan 1;34(1):45-55. doi: 10.1097/EDE.0000000000001554. Epub 2022 Sep 27.

Abstract

BACKGROUND

Unsupervised machine learning techniques have become increasingly popular for studying associations between gestational exposure mixtures and human health. Latent profile analysis is one method that has not been fully explored.

METHODS

We estimated associations between gestational chemical mixtures and child neurodevelopment using latent profile analysis. Using data from the Maternal-Infant Research on Environmental Chemicals (MIREC) research platform, a longitudinal cohort of pregnant Canadian women and their children, we generated latent profiles from 27 gestational exposure biomarkers. We then examined the associations between these profiles and child Verbal IQ, Performance IQ, and Full-Scale IQ, measured with the Wechsler Preschool and Primary Scale of Intelligence, Third Edition (WPPSI-III). We validated our findings using k-means clustering.

RESULTS

Latent profile analysis detected five latent profiles of exposure: a reference profile containing 61% of the study participants, a high monoethyl phthalate (MEP) profile with moderately low persistent organic pollutants (POPs) containing 26%, a high POP profile containing 6%, a low POP profile containing 4%, and a smoking chemicals profile containing 3%. We observed negative associations between both the smoking chemicals and high MEP profiles and all IQ scores and between the high POP profile and Full-Scale and Verbal IQ scores. We also found a positive association between the low POP profile and Full-Scale and Performance IQ scores. All associations had wide 95% confidence intervals.

CONCLUSIONS

Latent profile analysis is a promising technique for identifying patterns of chemical exposure and is worthy of further study for its use in examining complicated exposure mixtures.

摘要

背景

无监督机器学习技术已广泛应用于研究妊娠暴露混合物与人类健康之间的关联。潜在剖面分析是一种尚未充分探索的方法。

方法

我们使用潜在剖面分析来估计妊娠化学混合物与儿童神经发育之间的关联。利用来自母婴环境化学研究(MIREC)研究平台的纵向队列,即加拿大孕妇及其子女的数据,我们从 27 项妊娠暴露生物标志物中生成潜在剖面。然后,我们研究了这些剖面与儿童言语智商、表现智商和全量表智商之间的关联,这些智商通过韦氏学前和初级智力量表,第三版(WPPSI-III)进行测量。我们使用 k-均值聚类验证了我们的发现。

结果

潜在剖面分析检测到五种暴露的潜在剖面:一个包含 61%研究参与者的参考剖面,一个含有中度低持久性有机污染物(POPs)的高单乙基邻苯二甲酸酯(MEP)剖面,一个含有 6%的高 POP 剖面,一个含有 4%的低 POP 剖面,以及一个含有 3%吸烟化学物质的剖面。我们观察到吸烟化学物质和高 MEP 剖面与所有智商得分以及高 POP 剖面与全量表和言语智商得分之间存在负相关。我们还发现低 POP 剖面与全量表和表现智商得分之间存在正相关。所有关联的 95%置信区间都很宽。

结论

潜在剖面分析是一种识别化学暴露模式的有前途的技术,值得进一步研究,以用于研究复杂的暴露混合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验