Department of Neurobiology, Northwestern University, Evanston, United States.
Elife. 2022 Sep 27;11:e64063. doi: 10.7554/eLife.64063.
Mixed electrical-chemical synapses potentially complicate electrophysiological interpretations of neuronal excitability and connectivity. Here, we disentangle the impact of mixed synapses within the spinal locomotor circuitry of larval zebrafish. We demonstrate that soma size is not linked to input resistance for interneurons, contrary to the biophysical predictions of the 'size principle' for motor neurons. Next, we show that time constants are faster, excitatory currents stronger, and mixed potentials larger in lower resistance neurons, linking mixed synapse density to resting excitability. Using a computational model, we verify the impact of weighted electrical synapses on membrane properties, synaptic integration and the low-pass filtering and distribution of coupling potentials. We conclude differences in mixed synapse density can contribute to excitability underestimations and connectivity overestimations. The contribution of mixed synaptic inputs to resting excitability helps explain 'violations' of the size principle, where neuron size, resistance and recruitment order are unrelated.
混合电-化学突触可能会使神经元兴奋性和连接性的电生理解释变得复杂。在这里,我们在幼鱼脊髓运动回路中分离了混合突触的影响。我们证明,与运动神经元“大小原则”的生物物理预测相反,神经元的大小与输入电阻之间没有关联。接下来,我们表明,在低电阻神经元中,时间常数更快,兴奋性电流更强,混合电位更大,这将混合突触密度与静息兴奋性联系起来。使用计算模型,我们验证了加权电突触对膜特性、突触整合以及耦合电位的低通滤波和分布的影响。我们得出的结论是,混合突触密度的差异可能导致兴奋性低估和连接性高估。混合突触输入对静息兴奋性的贡献有助于解释大小原则的“违反”,即神经元大小、电阻和募集顺序之间没有关系。