Lesser Ellen, Azevedo Anthony W, Phelps Jasper S, Elabbady Leila, Cook Andrew, Sakeena Syed Durafshan, Mark Brandon, Kuroda Sumiya, Sustar Anne, Moussa Anthony, Dallmann Chris J, Agrawal Sweta, Lee Su-Yee J, Pratt Brandon, Skutt-Kakaria Kyobi, Gerhard Stephan, Lu Ran, Kemnitz Nico, Lee Kisuk, Halageri Akhilesh, Castro Manuel, Ih Dodam, Gager Jay, Tammam Marwan, Dorkenwald Sven, Collman Forrest, Schneider-Mizell Casey, Brittain Derrick, Jordan Chris S, Macrina Thomas, Dickinson Michael, Lee Wei-Chung Allen, Tuthill John C
Department of Physiology and Biophysics, University of Washington, WA, USA.
Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
bioRxiv. 2024 Apr 28:2023.05.30.542725. doi: 10.1101/2023.05.30.542725.
Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. MN activity is coordinated by complex premotor networks that allow individual muscles to contribute to many different behaviors. Here, we use connectomics to analyze the wiring logic of premotor circuits controlling the leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. In contrast, wing premotor networks lack proportional synaptic connectivity, which may allow wing steering muscles to be recruited with different relative timing. By comparing the architecture of distinct limb motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.
动物运动由运动神经元(MNs)控制,运动神经元从中枢神经系统伸出以激活肌肉。MN的活动由复杂的运动前网络协调,这些网络允许单个肌肉参与许多不同的行为。在这里,我们使用连接组学来分析控制腿部和翅膀的运动前回路的布线逻辑。我们发现,两个运动前网络都聚集成模块,这些模块将支配具有相关功能肌肉的MN连接起来。在大多数腿部运动模块中,每个运动前神经元的突触权重与其目标MN的大小成正比,为分级MN募集建立了电路基础。相比之下,翅膀运动前网络缺乏成比例的突触连接,这可能允许翅膀转向肌肉以不同的相对时间被募集。通过比较同一动物内不同肢体运动控制系统的结构,我们确定了运动前网络组织的共同原则以及反映腿部和翅膀运动控制独特生物力学限制和进化起源的特化。