Suppr超能文献

基于混合神经网络的 ECG 信号中新的 P-QRS-T 波定位方法。

A novel P-QRS-T wave localization method in ECG signals based on hybrid neural networks.

机构信息

School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.

School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.

出版信息

Comput Biol Med. 2022 Nov;150:106110. doi: 10.1016/j.compbiomed.2022.106110. Epub 2022 Sep 21.

Abstract

As the number of people suffering from cardiovascular diseases increases every year, it becomes essential to have an accurate automatic electrocardiogram (ECG) diagnosis system. Researchers have adopted different methods, such as deep learning, to investigate arrhythmias classification. However, the importance of ECG waveform features is generally ignored when deep learning approaches are applied to classification tasks. P-wave, QRS-wave, and T-wave, containing plenty of physiological information, are three critical waves in the ECG heartbeat. The accurate localization of these critical ECG wave components is a prerequisite for ECG classification and diagnosis. In this study, a novel P-QRS-T wave localization method based on hybrid neural networks is proposed. The raw ECG signal is preprocessed sequentially by filtering, heartbeat extraction, and data standardization. The hybrid neural network is constructed by combining the residual neural network (ResNet) and the Long Short-Term Memory (LSTM). It predicts the relative positions of the P-peak, QRS-peak, and T-peak for each heartbeat. The proposed algorithm was validated on four ECG databases with input noise of different signal-to-noise ratio (SNR) levels. The results show that the proposed method can accurately predict the positions of the three key waves. The proposed P-QRS-T localization approach can improve the efficiency of ECG delineation. Integrated with cardiac disease classification methods, it can contribute to the development of advanced automatic ECG diagnosis systems.

摘要

随着每年心血管疾病患者人数的增加,拥有一个准确的自动心电图(ECG)诊断系统变得至关重要。研究人员采用了不同的方法,如深度学习,来研究心律失常分类。然而,当深度学习方法应用于分类任务时,通常会忽略心电图波形特征的重要性。P 波、QRS 波和 T 波包含大量的生理信息,是心电图心跳中的三个关键波。这些关键 ECG 波成分的准确定位是 ECG 分类和诊断的前提。在本研究中,提出了一种基于混合神经网络的新型 P-QRS-T 波定位方法。原始 ECG 信号依次经过滤波、心跳提取和数据标准化预处理。混合神经网络由残差神经网络(ResNet)和长短期记忆(LSTM)组合而成。它预测每个心跳的 P 波峰、QRS 波峰和 T 波峰的相对位置。该算法在四个具有不同信噪比(SNR)水平输入噪声的 ECG 数据库上进行了验证。结果表明,所提出的方法可以准确预测三个关键波的位置。所提出的 P-QRS-T 定位方法可以提高心电图描绘的效率。与心脏疾病分类方法相结合,有助于开发先进的自动 ECG 诊断系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验