Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
Mikrobiologie und Biotechnologie, Institut für Molekulare PhysiologieJohannes Gutenberg-Universität Mainz, Biozentrum II, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany.
ACS Nano. 2022 Oct 25;16(10):16091-16108. doi: 10.1021/acsnano.2c04377. Epub 2022 Sep 29.
Bacterial biofilm formation is a huge problem in industry and medicine. Therefore, the discovery of anti-biofilm agents may hold great promise. Biofilm formation is usually a consequence of bacterial cell-cell communication, a process called quorum sensing (QS). CeO nanocrystals (NCs) have been established as haloperoxidase (HPO) mimics and ecologically beneficial biofilm inhibitors. They were suggested to interfere with QS, a mechanism termed quorum quenching (QQ), but their molecular mechanism remained elusive. We show that CeO NCs are effective QQ agents, inactivating QS signals by bromination. Catalytic bromination of 3-oxo-C-AHL a QS signaling compound used by , was detected in the presence of CeO NCs, bromide ions, and hydrogen peroxide. Brominated acyl-homoserine lactones (AHLs) no longer act as QS signals but were not detected in the bacterial cultures. Externally added brominated AHLs also disappeared in cultures within minutes of their addition, indicating that they are rapidly degraded by the bacteria. Moreover, we detected the catalytic bromination of 2-heptyl-1-hydroxyquinolin-4(1)-one (HQNO), a multifunctional non-AHL QS signal from with antibacterial and algicidal properties controlling the expression of many virulence genes. Brominated HQNO was not degraded by the bacteria The repression of the quinolone signal (PQS) production and biofilm formation in through the catalytic formation of Br-HQNO on surfaces with coatings containing CeO enzyme mimics validates the non-toxic strategy for the development of anti-infectives.
细菌生物膜的形成是工业和医学领域的一个大问题。因此,发现抗生物膜剂可能有很大的前景。生物膜的形成通常是细菌细胞间通讯的结果,这个过程称为群体感应(QS)。CeO 纳米晶体(NCs)已被确立为过氧化物酶(HPO)模拟物和生态有益的生物膜抑制剂。它们被认为可以干扰 QS,这种机制称为群体感应淬灭(QQ),但其分子机制仍不清楚。我们表明,CeO NCs 是有效的 QQ 试剂,通过溴化作用使 QS 信号失活。在 CeO NCs、溴离子和过氧化氢存在的情况下,检测到 3-氧代-C-AHL 的催化溴化,这是一种 用于 QS 信号传递的化合物。在细菌培养物中没有检测到溴化酰基高丝氨酸内酯(AHLs),因为它们不再作为 QS 信号起作用。在添加外源性溴化 AHLs 后的几分钟内, 培养物中的溴化 AHLs 也消失了,这表明它们被细菌迅速降解。此外,我们还检测到 2-庚基-1-羟基喹啉-4(1)-酮(HQNO)的催化溴化,这是一种具有抗菌和杀藻特性的多功能非 AHL QS 信号,可控制许多毒力基因的表达。HQNO 被细菌 不能降解溴化 HQNO。CeO 酶模拟物涂层表面上的 Br-HQNO 催化形成抑制了 的喹诺酮信号(PQS)产生和生物膜形成,这验证了在开发抗感染药物方面的非毒性策略。