Suppr超能文献

使用新型基于深度学习的重建技术在 Turbo Spin Echo(TSE)序列中对四肢肌肉骨骼肿瘤的 T2 加权磁共振成像进行采集时间缩短和图像质量改善。

Reduction in Acquisition Time and Improvement in Image Quality in T2-Weighted MR Imaging of Musculoskeletal Tumors of the Extremities Using a Novel Deep Learning-Based Reconstruction Technique in a Turbo Spin Echo (TSE) Sequence.

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, 72076 Tuebingen, Germany.

MR Application Predevelopment, Siemens Healthcare GmbH, 91052 Erlangen, Germany.

出版信息

Tomography. 2022 Jul 6;8(4):1759-1769. doi: 10.3390/tomography8040148.

Abstract

Background: The aim of this study was to assess the technical feasibility and the impact on image quality and acquisition time of a deep learning-accelerated fat-saturated T2-weighted turbo spin echo sequence in musculoskeletal imaging of the extremities. Methods: Twenty-three patients who underwent MRI of the extremities were prospectively included. Standard T2w turbo inversion recovery magnitude (TIRMStd) imaging was compared to a deep learning-accelerated T2w TSE (TSEDL) sequence. Image analysis of 23 patients with a mean age of 60 years (range 30−86) was performed regarding image quality, noise, sharpness, contrast, artifacts, lesion detectability and diagnostic confidence. Pathological findings were documented measuring the maximum diameter. Results: The analysis showed a significant improvement for the T2 TSEDL with regard to image quality, noise, contrast, sharpness, lesion detectability, and diagnostic confidence, as compared to T2 TIRMStd (each p < 0.001). There were no differences in the number of detected lesions. The time of acquisition (TA) could be reduced by 52−59%. Interrater agreement was almost perfect (κ = 0.886). Conclusion: Accelerated T2 TSEDL was technically feasible and superior to conventionally applied T2 TIRMStd. Concurrently, TA could be reduced by 52−59%. Therefore, deep learning-accelerated MR imaging is a promising and applicable method in musculoskeletal imaging.

摘要

背景

本研究旨在评估深度学习加速脂肪饱和 T2 加权涡轮自旋回波序列在四肢肌肉骨骼成像中的技术可行性,以及对图像质量和采集时间的影响。

方法

前瞻性纳入 23 例行四肢 MRI 检查的患者。标准 T2w 反转恢复幅度(TIRMStd)成像与深度学习加速 T2w TSE(TSEDL)序列进行比较。对 23 例平均年龄为 60 岁(范围 30-86 岁)的患者进行图像分析,评估图像质量、噪声、锐利度、对比度、伪影、病变检出率和诊断信心。记录病变的最大直径以评估病变检出率。

结果

与 T2 TIRMStd 相比,T2 TSEDL 在图像质量、噪声、对比度、锐利度、病变检出率和诊断信心方面均有显著改善(均 p<0.001)。病变检出数量无差异。采集时间(TA)可减少 52-59%。组内一致性几乎为完美(κ=0.886)。

结论

加速 T2 TSEDL 在技术上是可行的,优于常规应用的 T2 TIRMStd。同时,TA 可减少 52-59%。因此,深度学习加速 MR 成像在肌肉骨骼成像中是一种很有前途且适用的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fc/9326558/06ad597b9486/tomography-08-00148-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验