Suppr超能文献

库兹涅茨模型能否复制和预测人类的癌症生长?

Can the Kuznetsov Model Replicate and Predict Cancer Growth in Humans?

机构信息

Process Systems Engineering (AVT.SVT), RWTH Aachen University, 52074, Aachen, Germany.

Department of Computing, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK.

出版信息

Bull Math Biol. 2022 Sep 29;84(11):130. doi: 10.1007/s11538-022-01075-7.

Abstract

Several mathematical models to predict tumor growth over time have been developed in the last decades. A central aspect of such models is the interaction of tumor cells with immune effector cells. The Kuznetsov model (Kuznetsov et al. in Bull Math Biol 56(2):295-321, 1994) is the most prominent of these models and has been used as a basis for many other related models and theoretical studies. However, none of these models have been validated with large-scale real-world data of human patients treated with cancer immunotherapy. In addition, parameter estimation of these models remains a major bottleneck on the way to model-based and data-driven medical treatment. In this study, we quantitatively fit Kuznetsov's model to a large dataset of 1472 patients, of which 210 patients have more than six data points, by estimating the model parameters of each patient individually. We also conduct a global practical identifiability analysis for the estimated parameters. We thus demonstrate that several combinations of parameter values could lead to accurate data fitting. This opens the potential for global parameter estimation of the model, in which the values of all or some parameters are fixed for all patients. Furthermore, by omitting the last two or three data points, we show that the model can be extrapolated and predict future tumor dynamics. This paves the way for a more clinically relevant application of mathematical tumor modeling, in which the treatment strategy could be adjusted in advance according to the model's future predictions.

摘要

在过去几十年中,已经开发出了几种预测肿瘤随时间增长的数学模型。这些模型的一个核心方面是肿瘤细胞与免疫效应细胞的相互作用。库兹涅佐夫模型(Kuznetsov 等人,在 Bull Math Biol 56(2):295-321, 1994 年)是这些模型中最突出的模型,并且已经被用作许多其他相关模型和理论研究的基础。然而,这些模型中没有一个是用接受癌症免疫治疗的人类患者的大规模真实世界数据进行验证的。此外,这些模型的参数估计仍然是基于模型和数据驱动的医疗治疗的主要瓶颈。在这项研究中,我们通过对每个患者的个体参数进行估计,将库兹涅佐夫模型定量拟合到一个包含 1472 名患者的大型数据集上,其中 210 名患者的观测数据超过 6 个。我们还对估计参数进行了全局实用可识别性分析。因此,我们证明了几种参数值的组合可以导致准确的数据拟合。这为模型的全局参数估计开辟了可能性,其中所有或某些参数的值对于所有患者都是固定的。此外,通过省略最后两个或三个观测数据点,我们证明了模型可以进行外推并预测未来的肿瘤动力学。这为数学肿瘤建模的更具临床相关性的应用铺平了道路,其中可以根据模型的未来预测提前调整治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/9522842/c3580a14efca/11538_2022_1075_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验