Suppr超能文献

预测 ACL 重建的主观失败:挪威膝关节韧带登记处和患者报告结果的机器学习分析。

Predicting subjective failure of ACL reconstruction: a machine learning analysis of the Norwegian Knee Ligament Register and patient reported outcomes.

机构信息

Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN, USA; Department of Orthopaedic Surgery, CentraCare, Saint Cloud, MN, USA.

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.

出版信息

J ISAKOS. 2022 Jun;7(3):1-9. doi: 10.1016/j.jisako.2021.12.005. Epub 2022 Jan 11.

Abstract

OBJECTIVES

Accurate prediction of outcome following anterior cruciate ligament (ACL) reconstruction is challenging, and machine learning has the potential to improve our predictive capability. The purpose of this study was to determine if machine learning analysis of the Norwegian Knee Ligament Register (NKLR) can (1) identify the most important risk factors associated with subjective failure of ACL reconstruction and (2) develop a clinically meaningful calculator for predicting the probability of subjective failure following ACL reconstruction.

METHODS

Machine learning analysis was performed on the NKLR. All patients with 2-year follow-up data were included. The primary outcome was the probability of subjective failure 2 years following primary surgery, defined as a Knee Injury and Osteoarthritis Outcome Score (KOOS) Quality of Life (QoL) subscale score of <44. Data were split randomly into training (75%) and test (25%) sets. Four models intended for this type of data were tested: Lasso logistic regression, random forest, generalized additive model (GAM), and gradient boosted regression (GBM). These four models represent a range of approaches to statistical details like variable selection and model complexity. Model performance was assessed by calculating calibration and area under the curve (AUC).

RESULTS

Of the 20,818 patients who met the inclusion criteria, 11,630 (56%) completed the 2-year follow-up KOOS QoL questionnaire. Of those with complete KOOS data, 22% reported subjective failure. The lasso logistic regression, GBM, and GAM all demonstrated AUC in the moderate range (0.67-0.68), with the GAM performing best (0.68; 95% CI 0.64-0.71). Lasso logistic regression, GBM, and the GAM were well-calibrated, while the random forest showed evidence of mis-calibration. The GAM was selected to create an in-clinic calculator to predict subjective failure risk at a patient-specific level (https://swastvedt.shinyapps.io/calculator_koosqol/).

CONCLUSION

Machine learning analysis of the NKLR can predict subjective failure risk following ACL reconstruction with fair accuracy. This algorithm supports the creation of an easy-to-use in-clinic calculator for point-of-care risk stratification. Clinicians can use this calculator to estimate subjective failure risk at a patient-specific level when discussing outcome expectations preoperatively.

LEVEL OF EVIDENCE

Level-III Retrospective review of a prospective national register.

摘要

目的

准确预测前交叉韧带(ACL)重建后的结果具有挑战性,而机器学习有可能提高我们的预测能力。本研究的目的是确定对挪威膝关节韧带登记处(NKLR)进行机器学习分析是否可以(1)确定与 ACL 重建后主观失败相关的最重要的危险因素,以及(2)开发一种用于预测 ACL 重建后主观失败概率的具有临床意义的计算器。

方法

对 NKLR 进行了机器学习分析。纳入所有具有 2 年随访数据的患者。主要结局是术后 2 年主观失败的概率,定义为膝关节损伤和骨关节炎结果评分(KOOS)生活质量(QoL)子量表评分<44。数据随机分为训练(75%)和测试(25%)集。测试了四种旨在用于此类数据的模型:套索逻辑回归、随机森林、广义加性模型(GAM)和梯度提升回归(GBM)。这四种模型代表了对统计细节(如变量选择和模型复杂性)的不同处理方法。通过计算校准和曲线下面积(AUC)来评估模型性能。

结果

在符合纳入标准的 20818 名患者中,有 11630 名(56%)完成了 2 年的 KOOS QoL 问卷调查。在具有完整 KOOS 数据的患者中,22%报告主观失败。套索逻辑回归、GBM 和 GAM 的 AUC 均处于中等范围(0.67-0.68),其中 GAM 表现最佳(0.68;95%CI 0.64-0.71)。套索逻辑回归、GBM 和 GAM 均具有良好的校准性能,而随机森林则显示出校准不良的迹象。选择 GAM 来创建一个用于预测患者特异性水平的主观失败风险的门诊计算器(https://swastvedt.shinyapps.io/calculator_koosqol/)。

结论

对 NKLR 进行机器学习分析可以以相当高的准确性预测 ACL 重建后的主观失败风险。该算法支持创建一个易于使用的门诊计算器,用于进行床边风险分层。临床医生可以在术前讨论结果预期时,使用此计算器来估计患者特异性水平的主观失败风险。

证据水平

前瞻性全国登记处的三级回顾。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验