Suppr超能文献

模拟微重力下人骨髓基质细胞的长期成骨分化:新发现的蛋白质。

Long-term osteogenic differentiation of human bone marrow stromal cells in simulated microgravity: novel proteins sighted.

机构信息

Biochemistry Unit, Department of Molecular Medicine (DMM), Centre for Health Technologies (CHT), UdR INSTM University of Pavia, Pavia, Italy.

Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via D. Trentacoste 2, 20134, Milan,, Italy.

出版信息

Cell Mol Life Sci. 2022 Oct 1;79(10):536. doi: 10.1007/s00018-022-04553-2.

Abstract

Microgravity-induced bone loss is a major concern for space travelers. Ground-based microgravity simulators are crucial to study the effect of microgravity exposure on biological systems and to address the limitations posed by restricted access to real space. In this work, for the first time, we adopt a multidisciplinary approach to characterize the morphological, biochemical, and molecular changes underlying the response of human bone marrow stromal cells to long-term simulated microgravity exposure during osteogenic differentiation. Our results show that osteogenic differentiation is reduced while energy metabolism is promoted. We found novel proteins were dysregulated under simulated microgravity, including CSC1-like protein, involved in the mechanotransduction of pressure signals, and PTPN11, SLC44A1 and MME which are involved in osteoblast differentiation pathways and which may become the focus of future translational projects. The investigation of cell proteome highlighted how simulated microgravity affects a relatively low number of proteins compared to time and/or osteogenic factors and has allowed us to reconstruct a hypothetical pipeline for cell response to simulated microgravity. Further investigation focused on the application of nanomaterials may help to increase understanding of how to treat or minimize the effects of microgravity.

摘要

微重力引起的骨质流失是太空旅行者的主要关注点。地面微重力模拟器对于研究微重力暴露对生物系统的影响以及解决由于无法进入真实空间而受到的限制至关重要。在这项工作中,我们首次采用多学科方法来描述在成骨分化过程中,人类骨髓基质细胞对长期模拟微重力暴露的反应的形态、生化和分子变化。我们的结果表明,成骨分化减少,而能量代谢增强。我们发现模拟微重力下新的蛋白质失调,包括参与压力信号机械转导的 CSC1 样蛋白、参与成骨细胞分化途径的 PTPN11、SLC44A1 和 MME,它们可能成为未来转化项目的重点。细胞蛋白质组的研究强调了模拟微重力与时间和/或成骨因子相比如何影响相对较少的蛋白质,并使我们能够重建细胞对模拟微重力反应的假设途径。进一步集中研究纳米材料的应用可能有助于增加对如何治疗或最小化微重力影响的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7fa/9526692/d43836d164a9/18_2022_4553_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验